

## WORKS OF PROFESSOR MILO S. KETCHUM

## PUBLISHED BY THE McGRAW-HILL BOOK COMPANY

THE DESIGN OF STEEL MILL BUILDINGS and the Calculation of Stresses in Framed Structures, Third Edition Cloth, $61 / 2 x 9$ ins., pp. $562+x v i, 66$ tables and 270 illustrations in the text. Price, $\$ 4.00$ net, postpaid.

## THE DESIGN OF WALLS, BINS AND GRAIN ELEVATORS, Second Edition

Cloth, $61 / 2$ x9 ins., pp. $556+$ xiv, 40 tables, 304 illustrations in the text and two folding plates. Price, $\$ 4.00$ net, postpaid.
THE DESIGN OF HIGHWAY BRIDGES and the Calculation of Stresses in Bridge Trusses
Cloth, $61 / 2 x 9$ ins., pp. $544+x v i, 77$ tables, 300 illustrations in the text and 8 folding plates. Price, $\$ 4.00$ net, postpaid.

## THE DESIGN OF MINE STRUCTURES

Cloth, $61 / 2 \times 9$ ins., pp. $460+\mathrm{xvi}, 65$ tables, 265 illustrations in the text and 7 folding plates. Price, $\$ 4.00$ net, postpaid.
SPECIFICATIONS FOR STEEL FRAME MILL BUILDINGS
Paper, $61 / 2 \times 9$ ins., pp. 22. Reprinted from " The Design of Steel Mill Buildings." Price, 25 cents.
SURVEYING MANUAL. A Manual of Field and Office Methods for the Use of Students in Surveying
By Professors William D. Pence and Milo S. Ketchum.
I eather, $41 / 2 \times 7$ ins., pp. $252+$ xii, Io plates and 140 illustrations in the text. Price, $\$ 2.00$ net, postpaid.
OFFICE-COPY BOOKLET
For use with Pence and Ketchum's "Surveying Manual." Tag board, $41 / 2 \times 7$ ins., pp. 32, ruled in column and rectangles. Price, $\$ 1.00$ per dozen or 50 cents per half dozen.

Tables of contents of the different books follow the index.

## THE DESIGN OF

## STEEL MILL BUILDINGS

AND

THE CALCULATION OF

## STRESSES IN FRAMED STRUCTURES

BY

MILO S. KETCHUM, C.E.

dean of college of engineering and propessor of civil engineering, university or COLORADO; CONSULTING ENGINEER; MEMBER AMERICAN SOCIETY OF CIVIL ENGINEERS; MEMBER AMERICAN SOCIETY FOR TESTING MATERIALS; MEMBER SOCIETY FOR

THE PROMOTION OF ENGINEERING BDUCATION

# THIRD EDITION, ENLARGED <br> FIRST THOUSAND <br> TOTAL ISSUE, TEEN THOUSAND 

McGRAW-HILL BOOK COMPANY
239 WEST 39TH STREET, NEW YORK
6 bouverie street, london, E. C.
1912

## TH KS

$K^{4}$
qi

Copyright, 1903, 1906, 1912
BY
Milo S. Ketchum

$$
\begin{aligned}
& \because: \therefore \quad \quad \because \because: \because \vdots \vdots
\end{aligned}
$$

## PREFACE TO THE FIRST EDITION.

This book is intended to provide a short course in the calculation of stresses in framed structures and to give a brief discussion of mill building construction. The book is intended to supplement the elementary books on stresses on the one hand, and the more elaborate treatises on bridge design on the other. While the book is cuncerned chiefly with mill buildings it is nevertheless true that much of the matter will apply equally well to all classes of steel frame construction.

In the course in stresses an attempt has been made to give a concise, logical and systematic treatment. Both the algebraic and graphic methods of calculating stresses are fully described and illustrated. Each step in the solution is fully explained and analyzed so that the student will get a definite idea of the underlying principles.

Attention is called to the graphic solutions of the transverse bent, the portal and the two-hinged arch, which are believed to be new, and have proved their worth by actual test in the class room. The diagram for finding the stress in eye-bars due to their own weight is new, and its use will save considerable time in designing bridges.

In the discussion of mill building construction the aim has been to describe the methods of construction and the material used, together with a brief treatment of mill building design, and the making of estimates of weight and cost. The underlying idea has been to give methods, data and details not ordinarily available, and to discuss the matter presented in a way to assist the engineer in making his designs and the detailer in developing the designs in the drafting room. Every engineer should be familiar and be provided with one or more of the standard handbooks, and therefore only such tables as are not ordinarily available are given.

## 254676

The present book is a result of two years experience as designing engineer and contracting agent for the Gillette-Herzog Mfg. Co., Minneapolis, Minn., and four years experience in teaching the subject at the University of Illinois. This book represents the course given by the author in elementary stresses and in the design of metal structures, preliminary to a course in bridge design. While written primarily for the author's students it is hoped that the book will be of interest to others, especially to the younger engineers.

As far as practicable credit has been given in the body of the book for drawings and data. In addition the author wishes to acknowledge his indebtedness to various sources for drawings and information to which it has not been practicable to give proper individual credit. He wishes to thank Messrs. C. W. Malcolm, L. G. Parker and R. H. Gage, Instructors in Civil Engineering in the University of Illinois, for assistance in preparing the drawings, especially Mr. Malcolm who made a large part of the drawings.

The author will consider it a favor to have errors brought to his notice.

Champaign, Ill.,
August 17,1903 . S. K.

## PREFACE TO THE SECOND EDITION.

In this enlarged edition more than 100 pages of new material, including many cuts, have been added. The additions include a discussion of influence diagrams; the calculation of stresses in pins; a chapter on "Graphic Methods for Calculating the Deflection of Beams"; data on loads, foundations, and saw-tooth roofs; descriptions of various buildings; and an appendix giving the analyses of 22 Problems in Graphic Statics.

The author wishes to acknowledge the appreciation with which the first edition was received by engineers and instructors.

Boulder, Colo.,
M. S. K. June I, 1906.

## PREFACE TO THE THIRD EDITION.

In this edition the chapters on "Stresses in Framed Structures" and "Stresses in Bridge Trusses" have been rewritten and enlarged; the "Specifications for Steel Frame Buildings" have been revised and rewritten; many of the cuts in the book have been redrawn, and many revisions and additions have been made. The additions include two Problems in Graphic Statics, and Appendix III, "Structural Drawings, Estimates and Designs," which contains 78 pages, 30 tables and 24 cuts, and furnish data and many tables not readily available. The number of pages in this edition has been increased by 82 , and the number of cuts by 30 .

The author wishes to acknowledge the continued appreciation with which the book has been received.

Boulder, Colo.,
M. S. K.

June I, 1912.

## TABLE OF CONTENTS.

## Introduction

## PAGE.

Steel Frame Mill Buildings ..... I
Steel Mill Buildings with Masonry Filled Walls. ..... 2
Mill Buildings with Masonry Walls ..... 3
PART I. LOADS.
Chapter I. Dead Loads.
Weight of Roof Trusses ..... 5
Weight of Purlins, Girts, etc ..... 8
Weight of Covering ..... 8
Weight of Structure ..... 9
Chapter II. Snow Loads.
Snow Loads ..... 10
Chapter III. Wind Loads.
Wind Pressure ..... 12
Wind Pressure on Inclined Surfaces ..... I3
Chapter IV. Miscellaneous Loads.
Live Loads on Floors ..... 17
Weight of Hand Cranes ..... 18
Weight of Electric Cranes ..... 18
Weights of Miscellaneous Material. ..... 19
Concentrated Live Loads ..... 21

## PART II. STRESSES. <br> Chapter V. Graphic Statics.

Equilibrium ..... 22
Representation of Forces ..... 22
Force Triangle ..... 22
Force Polygon ..... 24
Equilibrium of Concurrent Forces ..... 24
Equilibrium of Non-concurrent Forces ..... 25
Equilibrium Polygon ..... 26
Reactions of a Simple Beam ..... 29
Reactions of a Cantilever Truss ..... 30
Equilibrium Polygon as a Framed Structure ..... 3 I
Graphic Moments ..... 32
Bending Moments in a Beam ..... 33
To Draw an Equilibrium Polygon Through Three Points ..... 33
Center of Gravity ..... 34
Moment of Inertia of Forces ..... 35
Moment of Inertia of Areas ..... 38
Chapter VI. Stresses in Framed Structures.
Methods of Calculation ..... 39
Algebraic Resolution ..... 40
Graphic Resolution ..... 42
Algebraic Moments ..... 44
Graphic Moments ..... 46
Chapter VII. Stresses in Simple Roof Trusses.
Loads ..... 47
Dead Load Stresses ..... 47
Dead and Ceiling Load Stresses ..... 48
Snow Load Stresses ..... 49
Wind Load Stresses ..... 49
Wind Load Stresses: No Rollers ..... 50
Wind Load Stresses: Rollers ..... 51
Concentrated Load Stresses. ..... 53

## Chapter VIII. Simple Beams.

Reactions ..... 55
Moment and Shear in Beams: Concentrated Loads ..... 56
Moment and Shear in Beams: Uniform Loads ..... 57
Chapter IX. Moving Loads on Beams.
Uniform Moving Loads ..... 59
Concentrated Moving Loads ..... 6I
Chapter X. Stresses in Bridge Trusses.
Method of Loading ..... 65
Algebraic Resolution. ..... 65
Graphic Resolution. ..... 70
Algebraic Moments ..... 72
Graphic Moments. ..... 73
Wheel Loads. ..... 76
Influence Diagrams. ..... 77
Maximum Moment in a Truss. ..... 77
Maximum Shear in a Truss ..... 79
Maximum Floor Beam Reaction ..... 8I
Chapter XI. Stresses in a Transverse Bent.
Dead and Snow Load Stresses ..... 83
Wind Load Stresses ..... 83
Algebraic Calculation of Stresses:
Case I. Columns Hinged at the Base ..... 84
Case II. Columns Fixed at the Base. ..... 87
Maximum Stresses ..... 91
Stresses in End Framing ..... 92
Bracing in the Upper Chord and Sides ..... 92
Graphic Calculation of Stresses:
Data ..... 93
Case 1. Permanent Dead and Snow Load Stresses ..... 94
Case 2. Wind Load Stresses; Wind Horizontal ; Columns Hinged ..... 96
Case 3. Wind Load Stresses; Wind Horizontal ; Columns Fixed at Base ..... 98
Case 4. Wind Load Stresses; Wind Normal ; Columns Hinged ..... 99
Case 5. Wind Load Stresses; Wind Normal; Columns Fixed at Base ..... IOI
Maximum Stresses ..... IOI
Graphic Calculation of Reactions ..... 103
Transverse Bent with Ventilator ..... 103
Transverse Bent with Side Sheds ..... 105
Chapter XII. Stresses in Portals.
Introduction ..... 109
Case I. Stresses in Simple Portals: Columns Hinged. Algebraic Solution ..... IIO
Graphic Solution ..... 112
Simple Portal as a Three-hinged Arch ..... II4
Case II. Stresses in Simple Portals: Columns Fixed. Algebraic Solution ..... II5
Anchorage of Columns ..... 115
Graphic Solution ..... 117
Stresses in Continuous Portals ..... 117
Stresses in a Double Portal ..... 118
Chapter XIII. Stresses in Three-hinged Arch.
Introduction ..... 120
Calculation of Stresses ..... 120
Calculation of Reactions: Algebraic Method ..... 120
Calculation of Reactions: Graphic Method ..... 121
Calculation of Dead Load Stresses. ..... 122
Calculation of Wind Load Stresses ..... 125
Chapter XIV. Stresses in Two-hinged Arch.
Introduction ..... 127
Calculation of Stresses ..... 127
Calculation of the Reactions ..... I28
Algebraic Calculation of Reactions ..... I3I
Graphic Calculation of Reactions ..... I33
Calculation of Dead Load Stresses in Arch ..... 135
Dead and Wind Load Stresses in Arch ..... 137
Arch with Horizontal Tie ..... I39
Temperature Stresses ..... 140
Design of Two-hinged Arch ..... 141
Chapter XV. Combined and Eccentric Stresses.
Combined Direct and Cross Bending Stresses ..... 143
Combined Compression and Cross Bending ..... 145
Combined Tension and Cross Bending ..... 148
Stress in a Bar Due to its Own Weight ..... 149
Diagram for Stress in Bars Due to Their Own Weight. ..... 149
Eccentric Riveted Connections ..... 152
Stresses in Pins ..... 154
Chapter XVa. Graphic Methods for Calculating the Deflec- tion of Beams.
Introduction ..... 158
Graphic Equation of the Elastic Curve ..... 158
Simple Beam ..... 161
Cantilever Beam ..... 162
Continuous Beams ..... 164
Continuous Beam of $n$ Spans ..... 168
Transverse Bent ..... 168
Reactions of Simple Draw Bridges ..... 169
Draw Bridge with Three Supports ..... 170
Draw Bridge with Four Supports ..... 172
PART III. DESIGN OF MILL BUILDINGS.
Chapter XVI. General Design.
General Principles ..... 175
Chapter XVII. Framework.
Arrangement ..... 179
Trusses-Types of Trusses ..... 180
Saw Tooth Roofs. ..... 18I
Ketchum's Saw Tooth Roof ..... 186
Pitch of Roof. ..... 191
Pitch of Truss ..... 192
Economic Spacing of Trusses ..... 192
Transverse Bents. ..... 195
Truss Details ..... 197
Columns ..... 202
Column Details ..... 205
Struts and Bracing ..... 211
Purlins and Girts ..... 213
Design of Parts of the Structure ..... 2I3
Design of Trusses. ..... 214
Design of Columns ..... 217
Design of Plate Girders. ..... 221
Crane Girders ..... 224
Chapter XVIII. Corrugated Steel.
Introduction ..... 225
Fastening Corrugated Steel. ..... 227
Strength of Corrugated Steel ..... 230
Corrugated Steel Details. ..... 232
Anti-condensation Roofing ..... 241
Corrugated Steel Plans. ..... 244
Cost of Corrugated Steel ..... 244
Chapter XIX. Roof Coverings.
Introduction ..... 246
Corrugated Steel Roofing. ..... 246
Slate Roofing ..... 247
Tile Roofing ..... 250
Tin Roofs ..... 251
Sheet Steel Roofing. ..... 253
Gravel Roofing ..... 254
Slag Roofing ..... 256
Asphalt Roofing ..... 257
Shingle Roofs ..... 258
Asbestos Roofing ..... 258

## Table of Contents

xiii
Carey's Roofing ..... 259
Granite Roofing ..... 259
Ruberoid Roofing ..... 259
Ferroinclave ..... 260
Examples of Roofs ..... 261
Roof Coverings for Railway Buildings ..... 261
Chapter XX. Side Walls and Masonry Walls.
Side Walls ..... 263
Corrugated Steel ..... 263
Expanded Metal and Plaster ..... 263
Concrete Slabs ..... 266
Masonry Walls ..... 267
Concrete Buildings ..... 268
Chapter XXI. Foundations.
Bearing Power of Soils ..... 272
Bearing Power of Piles ..... 273
Pressure of Wall on Foundation. ..... 275
Pressure of Pier on Foundation. ..... 277
Design of Footings ..... 278
Pressure of Column on Masonry ..... 278
Allowable Pressures ..... 279
Chapter XXII. Floors.
Ground Floors-Types of Floors ..... 281
Cement Floors ..... 282
Tar Concrete Floors ..... 284
Brick Floors ..... 284
Wooden Floors ..... 285
Examples of Floors. ..... 288
Floors above Ground ..... 290
Timber Floors ..... 290
Brick Arch ..... 290
Corrugated Iron Arch ..... 291
Expanded Metal ..... 292
Roebling ..... 293
" Buckeye" Fireproof ..... 294
Multiplex Steel ..... 295
Ferroinclave ..... 295
Corrugated ..... 295
Buckled Plates ..... 296
Steel Plate ..... 297
Thickness of Timber Flooring ..... 297
Chapter XXIII. Windows and Skyligitts.
Glazing ..... 298
Glass ..... 298
Diffusion of Light ..... 299
Relative Value of Different Kinds of Glass ..... 301
Kind of Glass to Use ..... 301
Placing the Glass ..... 302
Use of Window Shades ..... 303
Size and Cost of Glass ..... 304
Cost of Windows ..... 305
Translucent Fabric ..... 306
Cost of Translucent Fabric ..... 307
Double Glazing ..... 307
Details of Windows and Skylights ..... 307
Amount of Light Required ..... 310
Skylights for Trainsheds ..... 315
Chapter XXIV. Ventilators.
Ventilators ..... 317
Monitor Ventilators ..... 317
Cost of Monitor Ventilators ..... 320
Circular Ventilators ..... 320
Chapter XXV. Doors.
Paneled Doors ..... 322
Wooden Doors ..... 322
Steel Doors ..... 323
Cost of Doors ..... 325
Table of Contents ..... xv
Chapter XXVI. Shop Drawings and Rules.
Shop Drawings ..... 326
Erection Plan ..... 327
Choice of Sections ..... 328
Chapter XXVII. Paints and Painting.
Corrosion of Steel ..... 330
Paint ..... 330
Oil Paint ..... 330
Linseed Oil ..... 331
Lead ..... 332
Zinc ..... 333
Iron Oxide ..... 333
Carbon ..... 333
Mixing the Paint ..... 334
Proportions ..... 334
Covering Capacity ..... 334
Applying the Paint ..... 335
Cleaning the Surface ..... 336
Cost of Paint ..... 336
Cost of Painting ..... 337
Priming Coat ..... 337
Finishing Coat ..... 338
Asphalt Paint ..... 339
Coal-Tar Paint ..... 339
Cement and Cement Paint. ..... 339
Portland Cement Paint ..... 340
References on Paint and Painting ..... 340
Chapter XXVIII. Estimate of Weight and Cost
Estimate of Weight ..... 341
Estimate of Cost ..... 349
Cost of Material ..... 350
Cost of Mill Details ..... 350
Shop Cost ..... 353
Cost of Drafting ..... 354
Actual Shop Costs ..... 355
Cost of Erection ..... 355
Cost of Miscellaneous Material ..... 355
PART IV. MISCELLANEOUS STRUCTURES.
Steel Dome for West Baden, Ind., Hotel ..... 359
The St. Louis Coliseum ..... 362
The Locomotive Shops of the Atchison, Topeka and Santa Fe R. R. ..... 367
The Locomotive Erecting and Machine Shop, Philadelphia and Reading R. R ..... 372
The New Steam Engineering Building for the Brooklyn Navy Yard. ..... 381
Government Building, St. Louis Exposition. ..... 385
Reinforced Concrete Round-house for Canadian Pacific Railway ..... 388
APPENDIX I.
Specifications for Steel Frame Mill Buildings ..... 391
APPENDIX II.
Problems in Graphic Statics and the Calculation of Stresses ..... 423
Index ..... 473
APPENDIX III.
Structural Drawings, Estimates and Designs.
Chapter I. Plans of Structures ..... 2
Chapter II. Structural Drawings ..... 3
Chapter III. Estimates of Structural Steel ..... 32
Chapter IV. Design of Steel Structures ..... 44
Chapter V. Tables and Structural Standards ..... 48

## Steel Mill Buildings

## Introduction.

Steel mill buildings may be divided into three classes as follows: (1) steel frame mill buildings; (2) steel mill buildings with masonry filled walls; and (3) mill buildings with masonry walls.
I. Steel Frame Mill Buildings.-A steel frame mill building is made by covering a self-supporting steel frame with a light covering, usually fireproof. The framework consists of transverse bents firmly braced by purlins, girts and diagonal braces. The usual methods of arranging the framework are as shown in Fig. I.

(a)

(b)

(c)

(d)

Fig. 1.
An intermediate transverse bent (c), Fig. I, consists of a steel roof truss with its ends supported on steel posts, and is made rigid by knee braces. The posts are either supported on the foundations or are anchored by them. The end bents are made either by running the end posts up to the end rafters as in (a), or by means of an end trussed bent as in (b) Fig. I. The end trussed bent (b) is usually preferred where extensions are contemplated, although the end post bent (a) is equally satisfactory and is usually somewhat cheaper.

The building is firmly braced transversely by means of bracing in the planes of the upper and lower chords and in the end bents, and longitudinally by means of bracing in the sides and in the planes of the upper and lower chords.

The roof covering is supported on steel purlins placed at right angles to the trusses and rafters. The side coverirg is fastened to horizontal girts which are fastened to the side and end posts. Where warmth is desired the roof and sides are lined.

Steel frame mill buildings are usually covered with corrugated iron or steel fastened to sheathing or directly to the purlins and girts. Expanded metal and plaster, or wire netting and plaster has been used to a limited extent for covering the sides and for sheathing the roof, and will certainly be muck used in the future where permanent structures are required. In the latter case slate or tile roofing is commonly used.

The buildings are lighted by means of windows in the side walls and the clerestory of the monitor ventilator shown in Fig. 1, or by means of windows in the side walls and skylights in the roof. Ventilation is effected by means of the monitor ventilator shown in Fig. I or by means of circular ventilators. Where glass is used in the clerestory of monitor ventilators the sash are made movable. The glass in the clerestory of monitor ventilators is often replaced by louvres which allow a free circulation of air and keep out the storm. In foundries and smelters the clerestory is often left entirely open or is slightly protected by simple swinging shutters.
2. Steel Mill Buildings with Masonry Filled Walls.-In mill buildings of this type part of the bracing in the side walls is usually omitted and the space between the columns is filled with a light wall of brick, stone, concrete or hollow tile. The construction of the roof and other constructional details are essentially the same as for steel frame mill buildings. Buildings of this type are quite rigid and are usually somewhat cheaper than type (3).
3. Mill Buildings with Masonry Walls.-Buildings of this type are made by supporting the roof trusses directly on brick, stone or concrete walls. The construction of the roof is essentially the same as for types (1) and (2), except that the trusses are somewhat lighter on account of the smaller wind stresses.

The discussion of the simple steel frame mill building shown in Fig. I includes practically all the problems and details which are encountered in the design of steel mill buildings of all types.

The problems involved in the design of mill buildings will be divided into Part I, Loads; Part II, Stresses ; Part III, Design of Mill Buildings; and Part IV, Miscellaneous Structures. In general the discussion will relate to the design of mill buildings but in a few cases, particularly in stresses, quite a number of problems will be discussed that are only indirectly related to the subject.

## PART 1.

LOADS.

The loads to be provided for in designing a mill building will depend to a large degree upon the use to which the finished structure is to be put. The loads may be classed under (1) dead loads; (2) snow loads ; (3) wind loads ; and (4) miscellaneous loads. Concentrated floor and roof loads, girder and jib crane, and miscellaneous loads should receive special attention, and proper provision should be made in each case. No general solution can be given for providing for miscellaneous loads, but each problem must be worked out to suit local conditions.

## CHAPTER I.

Dead Loads.
Dead loads may be divided into (a) weight of structure ; (b) concentrated loads.

The weight of the structure may be divided intn (1) the weight of the roof trusses ; (2) the weight of the roof covering ; (3) the weight of the purlins and bracing ; (4) the weight of the side and end walls. The first three items, together with the concentrated roof loads, constitute the dead loads used in designing the trusses.

The weights of mill buildings vary so much that it is not possible to give anything more than approximate values for the different items which go to make up the dead load. The following data will, however, materially assist the designer in arriving at approximately the proper
dead load to assume for computing stresses, and the approximate weight of metal to use as a basis for preliminary estimates.

Weight of Roof Trusses.-The weight of roof trusses varies with the span, the distance between trusses, the load carried or capacity of the truss, and the pitch.

The empirical formula

$$
\begin{equation*}
W=\frac{P}{45} A L\left(1+\frac{L}{5 \sqrt{ } A}\right) \tag{1}
\end{equation*}
$$

where
$W=$ weight of steel roof truss in pounds;
$P=$ capacity of truss in pounds per square foot of horizontal projection of roof ( 30 to 80 lbs .) ;
$A=$ distance center to center of trusses in feet (8 to 30 feet) ;
$L_{1}=$ span of truss in feet;
was deduced by the author from the computed and shipping weights of mill building trusses. The trusses were riveted Fink trusses with purlins placed at panel points, and were made up of angles with connecting plates; minimum size of angles $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$, minimum thickness of plates. $1 / 4^{\prime \prime}$.

The trusses whose weights were used in deducing this formula had a pitch of $1 / 4\left(6^{\prime \prime}\right.$ in $\left.12^{\prime \prime}\right)$, but the formula gives quite accurate results for trusses having a pitch of $1 / 6$ to $1 / 3$. The trusses were designed for a tensile stress of 15000 lbs . per square inch and a compressive stress of $15000-55 \frac{l}{r}$ lbs. per square inch, where $l=$ length and $r=$ the radius of gyration of the member, both in inches.

The weight of steel roof trusses for a capacity, $P$, of 40 lbs . per square foot for different spacings is given in Fig. 2. The weights of trusses for other capacities can be obtained by multiplying the tabular values by the ratio of the capacities.

Dividing (I) by $A L$ we have the weight of roof truss, $W_{\mathrm{s}}$, per square foot of horizontal projection of the roof

$$
\begin{equation*}
W_{s}=\frac{P}{45}\left(1+\frac{L}{5 \sqrt{ } A}\right) \tag{2}
\end{equation*}
$$



Fig. 2. Weight of roof trusses for a capacity of 40 lbs. per SQUARE FOOT.

The weight of steel roof trusses per square foot of horizontal projection of roof for a capacity, $P$, of 40 lbs . per square foot is given in Fig 3.

It should be noted that $W_{\mathbf{s}}$ is the dead load per square foot carried by an interior truss. The actual weight of trusses per square foot of horizontal projection for a building with $n$ panels will be $W_{\mathrm{s}} \frac{(n-1)}{n}$ where end post bent (a), Fig. I, is used, and $W_{\mathrm{s}} \frac{(n+1)}{n}$ where end truss bent (b), Fig. I, is used, assuming that all trusses are made alike.

Weight of Light Trusses.-Formula (I) gives the weight of mill building trusses and will usually cover the weight of knee braces and ventilator framing. By reducing the minimum thickness of metal and


Fig. 3. Weight of roof trusses per square foot of horizontal projection for a capacity of 40 Lbs. per square foot.
by skinning the sections it is possible to materially reduce the weights. Weight of Simple Roof Trusses.-Simple roof trusses supported

TABLE $I$.
Weight of fink trusses, supported on masonry walls, deSIGNED FOR A VERTICAL LOAD OF 40 POUNDS PER SQUARE FOOT OF horizontal projection of roof.

| Span, L, <br> in Feet | Distance <br> between <br> Trusses, A, <br> in Feet | Weight of <br> Truss, W, <br> in Pounds | Span, L, <br> in Feet | Distance <br> between <br> Trusses, A, <br> in Feet | Weight of <br> Truss, W. <br> in Pounds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 16 | 741 | 65 | 20 | 3226 |
| 30 | 14 | 621 | 70 | 20 | 3951 |
| 35 | 16 | 910 | 75 | 20 | 4564 |
| 40 | 16 | 1211 | 75 | 14 | 3200 |
| 40 | 14 | 976 | 80 | 20 | 5160 |
| 45 | 16 | 1423 | 85 | 25 | 6730 |
| 50 | 16 | 1865 | 85 | 14 | 4000 |
| 50 | 14 | 1550 | 90 | 25 | 8010 |
| 55 | 16 | 2103 | 95 | 25 | 8600 |
| 60 | 20 | 2870 | 100 | 25 | 9392 |
| 60 | 14 | 2120 |  |  |  |

on walls will usually weigh somewhat less than the value given by Formula (1). The computed weights of Fink roof trusses without ventilators and with purlins spaced from 4 to 8 feet are given in Table I.

These trusses were designed by two different bridge companies to serve as standards and represent minimum weights. The trusses with a spacing of 14 feet were designed with minimum thickness of metal 3-16" and minimum size of angles $2^{\prime \prime} \times 13 / 8^{\prime \prime} \times 3-16^{\prime \prime}$. In the remainder of the trusses the minimum thickness of plates was $1 / 4^{\prime \prime}$ and minimum size of angles $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$. The trusses are all too light to give good service although their use in temporary structures may sometimes be allowable.

Weight of Purlins, Girts, Bracing, and Columns.-Steel purlins will weigh from $\mathrm{I} / 2$ to 4 pounds per square foot of area covered, depending upon the spacing and the capacity of the trusses and the snow load. If possible the actual weight of the purlins should be calculated. Girts and window framing will weigh from $11 / 4$ to 3 pounds per square foot of net surface. Bracing is quite a variable quantity. The bracing in the planes of the upper and lower chords will vary from $1 / 2$ to I pound per square foot of area. The side and end bracing, eave struts and columns will weigh about the same per square foot of surface as the trusses.

Weight of Covering.-The weight of corrugated iron or steel covering varies from $I 1 / 2$ to 3 pounds per square foot of area.

Weight of flat and corrugated steel sheets with $21 / 2 \mathrm{inch}$ CORRUGATIONS.

| Gage No. | Thicknessininches | Weight per Square ( $100 \mathrm{sq} . \mathrm{ft}$. ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Flat | Sheets | Corrugated Sheets |  |
|  |  | Black | Galvanized | Black Painted | Galvanized |
| 16 | . 0625 | 250 | 266 | 275 | 291 |
| 18 | . 0500 | 200 | 216 | 220 | 236 |
| 20 | . 0375 | 150 | 166 | 165 | 182 |
| 22 | . 0313 | 125 | 141 | 138 | 154 |
| 24 | . 0250 | 100 | 116 | 111 | 127 |
| 26 | . 0188 | 75 | 91 | 84 | 99 |
| 28 | . 0156 | 63 | 79 | 69 | 86 |

In estimating the weight of corrugated steel allow about 25 per cent for laps where two corrugations side lap and 6 inches end lap are required, and about 15 per cent for laps where one corrugation side lap and 4 inches end lap are required. Nos. 20 and 22 corrugated steel are commonly used on the roof and Nos. 22 and 24 on the sides.

Weight of Roof Covering.-The approximate weight per square foot of various roof coverings is given in the following table:

Corrugated iron, without sheathing......... I to 3 lbs .
Felt and asphalt, without sheathing......... 2 "
Felt and gravel, without sheathing.......... 8 to 10
Slate, 3 -1 $6^{\prime \prime}$ to $1 / 4^{\prime \prime}$, without sheathing...... 7 to 9
Tin, without sheathing ....................... I to $11 / 2$
Skylight glass, $3-16^{\prime \prime}$ to $1 / 2^{\prime \prime}$, including frames 4 to 10 "
White pine sheathing $\mathrm{I}^{\prime \prime}$ thick .............. 3 "
Yellow pine sheathing $\mathrm{I}^{\prime \prime}$ thick.............. 4 "
Tiles, flat ....................................... 15 to 20 "
Tiles, corrugated ............................ . 8 to 1 "
Tiles, on concrete slabs......................... 30 to 35 "
Plastered ceiling . ........................... . . 10 "
For additional data on weight of roof coverings, see Chapter XIX. The actual weight of roof coverings should be calculated if possible.

Weight of the Structure.-The weight of the roof can now be fcund. The weight of the steel in the sides and ends is approximately the same per square foot as the steel work in the roof.

A very close approximation to the weight of the steel in the entire structure where no sheathing is used and the same weight of corrugated iron is used on sides as on roof, may be found as follows: Take the sum of the horizontal projection of the roof and the net surface of the sides and ends, after subtracting one-half of the area of the windows, wooden doors and clear openings; multiply the sum of these areas by the weight per square foot of the horizontal projection of the roof, and the product will be the approximate weight of the steel in the structure.

## CHAPTER II.

Snow Loads.

The annual snowfall in different localities is a function of the humidity and the latitude and is quite a variable quantity. The amount of snow on the ground at one time is still more variable. In the Lake Superior region very little of the snow melts as it falls, and almost the entire annual snowfall is frequently on the ground at one time; whiie on the other hand in the same latitude in the Rocky Mountains the dry winds evaporate the snow in even the coldest weather and a less proportion accumulates. In latitudes of 35 to 45 degrees the heavy snowfalls are often followed by a sleeting rain, and the snow and ice load on roofs sometimes nearly equals the weight of the annual snowfall.

From the records of the snowfall for the past ten years as given in the reports of the U. S. Weather Bureau and data obtained by personal experience, in British Columbia, Montana, the Lake Superior region and central Illinois the author presents the values given in Fig. 4 for snow loads for roofs of different inclinations in different latitudes. For the Pacific coast and localities with low humidity, take one-half of the values given. The weight of newly fallen snow was taken at 5 lbs. and packed snow at 12 lbs. per cubic foot.

A high wind may follow a heavy sleet and in designing the trusses the author would recommend the use of a minimum snow and ice load as given in Fig. 4 for all slopes of roofs. The maximum stresses due to the sum of this snow load, the dead and wind loads; the dead and the wind loads; or of the maximum snow load and the dead load being used in designing the members.


Fig. 4. Snow load on roofs for different latitudes, in lbs. PER SQUARE FOOT.

Snow loads per square foot of horizontal projection of roof are specified in various localities as follows: Chicago and New York, 20 lbs. ; Cincinnati and St. Louis, 10 lbs . New England, 30 lbs . The Baltimore and Ohio Railroad specifies 20 lbs . per square foot of horizontal projection of roof.

## CHAPTER III.

## Wind Loads.

Wind Pressure.-The wind pressure $(P)$ in pounds per square foot on a flat surface normal to the direction of the wind for any given velocity ( $V$ ) in miles per hour is given quite accurately by the formula

$$
\begin{equation*}
P=0.004 V^{2} \tag{3}
\end{equation*}
$$

The following table gives the pressure per square foot on a flat surface normal to the direction of the wind for different velocities as calculated by formula (3).

Vel. in miles Pressure, lbs. per per hour. square foot.


The pressure on other than flat surfaces may be taken in per cents of that given by formula (3) as follows: 80 per cent on a rectangular building; 60 per cent on the convex side of cylinders; 115 to 130 per
cent on the concave side of cylinders, channels and flat cups; and 130 to 170 per cent on the concave sides of spheres and deep cups.

The pressure on the vertical sides of buildings is usually taken at $3^{3}$ pounds per square foot, equivalent to $P$ equals $37^{1 / 2}$ pounds in formula (3). This would give a velocity of 96 miles per hour, which would seem to be sufficient for all except the most exposed positions The velocity of the wind in the St. Louis tornado was about $\mathbf{I} 20$ miles per hour. The records of the U. S. Weather Burean for the last ten years show only one instance where the velocity of the wind as recorded by the anemometer was more than 90 miles per hour. The actual pressure of wind gusts has been found to be about 60 per cent and the actual steady wind pressure only about 36 per cent of that registered by ordinary small anemometers, which further reduces the intensity of the observed pressures. The wind pressure has been found to increase as the distance above the ground increases.

Recent German specifications for design of tall chimneys specify wind loads per square foot as follows: 26 pounds on rectangular chimneys; 67 per cent of 26 pounds on circular chimneys; and 71 per cent of 26 pounds on octagonal chimneys.

The building laws of New York, Boston and Chicago require that steel buildings be designed for a horizontal wind pressure of 30 pounds per square foot. The Baltimore and Ohio Railroad specifies a horizontal wind pressure of 30 pounds per square foot.

From the above discussion it would seem that 30 pounds per square fcot on the sides and the normal component of a horizontal pressure of 30 pounds on the roof would be sufficient for all except exposed locations. If the building is somewhat protected a horizontal pressure of 20 pounds per square foot on the sides is certainly ample for heights less than, say, 30 feet.

Wind Pressure on Inclined Surfaces.-The wind is usually taken as acting horizontally and the normal component on inclined surfaces is calculated.

The normal component of the wind pressure on inclined surfaces has usually been computed by Hutton's empirical formula

$$
\begin{equation*}
P_{n}=P \sin A \quad 1.842 \cos A-1 \tag{4}
\end{equation*}
$$

where $P_{n}$ equals the normal component of the wind pressure, $P$ equals the pressure per square foot on a vertical surface, and $A$ equals the angle of inclination of the surface with the horizontal, Fig. (5).

The formula due to Duchemin

$$
\begin{equation*}
P_{n}=P \frac{2 \sin A}{1+\sin ^{2} A} \tag{5}
\end{equation*}
$$

where $P_{n}, P$ and $A$ are the same as in (4), gives results considerably larger for ordinary roofs than Hutton's formula, and is coming into quite general use.

The formula

$$
\begin{equation*}
P_{n}=\frac{P}{45} A \tag{6}
\end{equation*}
$$

where $P_{n}$ and $P$ are the same as in (4) and (5), and $A$ is the angle of inclination of the surface in degrees ( $A$ being equal to or less than $45^{\circ}$ ), gives results which agree very closely with Hutton's formula, and is much more simple.


Fig. 5.
Hutton's formula (4) is based on experiments which were very crude and probably erroneous. Duchemin's formula (5) is based on very careful experiments and is now considered the most reliable formula in use. The Straight Line formula (6) agrees with experiments quite closely and is preferred by many engineers on account of its simplicity.

The values of $P_{n}$ as determined by Hutton's, Duchemin's and the

Straight Line formulas are given in Fig. 6, for $P$ equals 20, 30 and 40 pounds.

It is interesting to note that Duchemin's formula with $P$ equals 30 pounds gives practically the same values for roofs of ordinary inclination as is given by Hutton's and the Straight Line formulas with $P$ equals 40 pounds.


Fig. 6. Normal wind load on roof according to different FORMULAS.

Duchemin has also deduced the formula

$$
\begin{equation*}
P_{h}=P \frac{2 \sin ^{2} A}{1+\sin ^{2} A} \tag{7}
\end{equation*}
$$

where $P_{h}$ in (7) equals the pressure parallel to the direction of the wind, Fig. 5; and

$$
\begin{equation*}
P_{l}=P \frac{2 \sin A \cos A}{1+\sin ^{2} A} \tag{8}
\end{equation*}
$$

where $P_{h}$ in (8) equals the pressure at right angles to the direction of the wind, Fig. 5. $\quad P_{l}$ may be an uplifting, a depressing or a side pressure. With an open shed in exposed positions the uplifting effect of the wind often requires attention. In that case the wind should be taken normal to the inner surface of the building on the leeward side, and the uplifting force determined by using formula (8). If the gables are closed a deep cup is formed, and the normal pressure should be increased 30 to 70 per cent.

That the uplifting force of the wind is often considerable in exposed localities is made evident by the fact that highway bridges are occasionally wrecked by the wind. The most interesting example known to the author is that of a roo-foot span combination bridge in Northwestern Montana which was picked up bodily by the wind, turned about 90 degrees in azimuth and dropped into the middle of the river. The end bolsters were torn loose although drift-bolted to the abutments.*

The wind pressure is not a steady pressure, but varies in intensity, thus producing excessive vibrations which cause the structure to rock if the bracing is not rigid. The bracing in mill buildings should be designed for initial tension, so that the building will be rigid. Rigidity is of more importance than strength in mill buildings.

For further information on this subject see a very elaborate and valuable monograph on "Wind Pressures in Engineering Construction," by Capt. W. H. Bixby, M. Am. Soc. C. E., published in Engineering News, Vol. XXXIII., pp. 175-184, March, 1895.

Wind Pressure on Office Buildings.-The following specification for wind pressure on office buildings has been proposed by Mr. C. C. Schneider. $\dagger$

Wind Pressure.-The wind pressure shall be assumed at 30 lb . per sq. ft. acting in either direction horizontally:
I. On the sides and ends of buildings and on the actually exposed surface, or the vertical projection of roofs;
2. On the total exposed surfaces of all parts composing the metal framework. The framework shall be considered an independent structure, without walls, partitions or floors.

[^0]
## CHAPTER IV.

## Miscellaneous Loads.

LIVE LOADS ON FLOORS.-Live loads on floors for mill buildings are very hard to classify and should be calculated for each case.

Floor loads as specified in the building laws of various cities are given in Table II, and the engineer should govern himself accordingly.

## TABLE II.

Floor loads in pounds per square foot as specified in various CITIES.

|  | New York | Chicago | Philadelphia | Boston |
| :---: | :---: | :---: | :---: | :---: |
| Dwellings ........ | $\left\{\begin{array}{l} \text { Upper floors } 75 \\ 1 \text { st floor } \\ \hline \end{array}\right.$ | 100 | 100 | 100 |
| Public Buildings.. | 90 | 100 | 120 | 150 |
| Light Manufacturing $\qquad$ | 120 | 100 | 100 |  |
| Warehouses and Factories....... | 150 and up |  | 150 and up | 250 and up |
| Sidewalks . | 300 |  |  |  |

Without reference to building laws the live loads per square foot, exclusive of weight of floor materials, given below are about standard practice.

Dwellings . .............. 70 lbs. per sq. ft.
Offices . ................. 70 to 100 lbs . per sq. ft.
Assembly halls ...........I20 to 150 lbs . per sq. ft.
Warehouses ............ 250 and up, lbs. per sq. ft.
Factories . ................ 200 to 450 lbs. per sq. ft.

The weight of floors above ground in mill buildings varies so much that it is useless to give weights. For a few data on weights of floors see Chapter on Floors.

WEIGHT OF HAND CRANES.-The approximate weight of a few of the common sizes of hand cranes made by Pawling and Har-

TABLE III.
Weight of traveling hand cranes.

| Capacity of Crane in Tons | Distance c to $\mathbf{c}$ of end wheels | 20-FOOT SPAN |  | 30-FOOT SPAN |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weight of Crane 1bs. | Maximum Load on each Wheel lbs. | Weight of Crane lbs. | Maximum Load on each Wheel lbs. |
| 3 | $3^{\prime}-0^{\prime \prime}$ | 4500 | 4500 | 5000 | 5000 |
| 5 | $3^{\prime}-0^{\prime \prime}$ | 5500 | 7000 | 6000 | 7500 |
| $71 / 2$ | $3^{\prime}-8^{\prime \prime}$ | 8000 | 10500 | 9000 | 11500 |
| 10 | $8^{\prime}-0^{\prime \prime}$ | 15000 | 18000 | 17000 | 20000 |
| 15 | $8^{\prime}-0^{\prime \prime}$ | 16000 | 20000 | 18000 | 21000 |
| 20 | $8^{\prime}-6^{\prime \prime}$ | 20000 | 26000 | 22000 | 27000 |

nischfeger, Milwaukee, Wis., and the maximum load on each wheel when the loaded trolley is at one end is given in Table III.


Fig. 7.
WEIGHT OF ELECTRIC CRANES.-The maximum load on each of the end wheels for common sizes of electric cranes made by

Pawling and Harnischfeger is given in Fig. 7. Cranes made by different manufacturers differ considerably in weight.

The weights and dimensions of typical traveling cranes as given in Table IIIa have been proposed for adoption as a standard.

TABLE IIIa.
Typical electric traveling cranes.*

| Capacity in Tons. | Span. | Wheel Base. | Maximum Wheel Load, in Pounds. | 8. | $v$. | Weight of Rail for: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Plate Girders. | Beams. |
|  | 4060 | 8 ft .6 in. | $\begin{aligned} & 12,000 \\ & 13,000 \end{aligned}$ | 10 in. | 7 ft . | 40 lb . per yd. | 40 |
|  |  | 9 "0 " |  |  |  |  | 40 |
| 10.............. | 40 | 9 "00 " | 19,000 | " | " | 45 | 40 |
| 15............. | 60 | 9 " 6 " | 21,000 | " | " | 45 | 40 |
|  | 40 | 9 " 6 " | 26,000 | " | " | 50 " | 50 |
|  |  | 10 " 0 " | 29,000 | "6. | " | 50 " | 50 |
| 20. | 40 | 10 " 0 " | 33,000 | 12 in. | 8 ft . | 55 " | 50 |
| 25............ | 60 | 10 " 6 " | 36,000 | " |  | 55 " | 50 |
|  | 40 | 10 " 0 " | 40,000 | " | " | 60 " | 50 |
|  | 60 | 10 " 6 " | 44,000 | " | " | 60 " | 50 |
|  | 40 | 10 "6 6 | 48,000 | " | " | 70 " | 60 |
| 30............. | 60 | 11 "0 " | 52,000 | " | " | 70 " | 60 |
| 40............. | 40 | 11 " 0 " | 64,000 | $14 \mathrm{in}$. | 9 ft . | 80 " | 60 |
| 50............ | 60 | 12 "0 " | 70,000 | " | ، | 80 " | 60 |
|  | 4060 | 11 "0 0 | 72,000 | " | " | 100 " | 60 |
|  |  | 12 " 0 | 80,000 | " |  | 100 | 60 |

I. Wheel-load can be assumed as distributed in top flange, over a distance equal to depth of girder, with a maximum limit of 30 in .
2. In addition to the vertical load, the top flanges of the girder shall withstand a lateral loading of two-tenths of the lifting capacity of the crane, equally divided between the four wheels of the crane.
$s=$ Side clearance from center of rail.
$v=$ Vertical clearance from top of rail.
3. The top flanges of the crane girders shall not be of smaller width than one-twentieth of their unsupported length.

WEIGHTS OF MISCELLANEOUS MATERIAL.-The weights of various kinds of merchandise are given in Table IV. For weights of other materials consult steel makers hand books.

[^1]TABLE IV.
Weights of merchandise.*

| Commodity | $\underset{\substack{\text { Weight in ins. } \\ \text { per cubio foot }}}{\text { a }}$ | Commodity | Weight in liss. |
| :---: | :---: | :---: | :---: |
| Wool in Bales | 5 to 28 | Caustic Soda. | 88 |
| Woolen Goods | 13 to 22 | Barrel Starch. | 23 |
| Baled Cotton. | 12 to 43 | Barrel Lime | 50 |
| Cotton Goods | 11 to 37 | ". Cement. | 73 |
| Rags in Bale | 7 to 36 | " Plaster | 53 |
| Paper | 10 to 69 | ". Lard O | 34 |
| Wheat | 39 to 44 | Rope | 42 |
| Corn. | 31 | Box Tin. | 278 |
| Oats | 27 | Box Glass | 60 |
| Baled Hay and Straw. | 14 to 19 | Crate Crockery. |  |
| Bleaching Powder.... | 31 | Bale Leather | 16 to 23 |
| Soda Ash | 62 | Sugar | 45 |
| Box Indig | 43 | Cheese | 30 |

The weights of miscellaneous building materials are given in Table IVa.

TABLE IVa.
Weights of building materials.

| Material. | Weight lbs. per $\mathrm{cu}, \mathrm{ft}$. | Material. | Weight lbs. per cu. ft. |
| :---: | :---: | :---: | :---: |
| Paving brick. | 150 | Glass | 160 |
| Common building brick. | 120 | Snow, freshly fallen | 10 |
| Soft building brick........... | 100 | Snow, wet | 50 |
| Granite | 170 | Spruce | 25 |
| Marble. | 170 | Hemlock | 25 |
| Limestone | 160 | White pine | 25 |
| Sandstone | 145 | Douglas fir | 30 |
| Slag. | 40 | Yellow pine | 40 |
| Gravel | 120 | White oak.. | 50 |
| Slate | 175 | Common brickwork | 100-120 |
| Sand, clay and earth (dry).. | 100 | Rubble masonry. | 130-150 |
| Sand, clay and earth (wet). | 120 | Ashlar masonry | 140-160 |
| Mortar | 100 | Cast iron. | 450 |
| Stone concrete ................. | 130-150 | Wrought iron | 480 |
| Cinder concrete .............. | 70 | Steel ........ | 490 |
| Paving asphaltum............. Plaster of paris ........... | 100 | Flaster, ceiling ... | $10 \text { to } 15 \mathrm{lb} \text {. }$ |
| Plaster of paris ........ | 140 |  | per sq. ft. |

[^2]CONCENTRATED LIVE LOADS.-The loads given in Table IIa have been proposed for different classes of buildings.* These loads consist of :
(a) A uniform load per square foot of floor area;
(b) A concentrated load which shall be applied to all points of the floor;
(c) A uniform load per linear foot for girders.

The maximum result is to be used in calculations.
The specified concentrated loads shall also apply to the floor construction between the beams for a length of five feet.

TABLE IIa.
Live loads for floors.

| Classes of Buildings. | Live Loads, in Pounds. |  |  |
| :---: | :---: | :---: | :---: |
|  | Distributed Load. | Concentrated Load. | Load per Linear Foot of Girder. |
| Dwellings, hotels, apartment-houses, dormitories, hospitals. $\qquad$ | 40 | 2,000 | 500 |
| Office buildings, upper stories. | 50 | 5,000 | 1,000 |
| Schoolrooms, theater galleries, churches. | 60 | 5,000 | 1,000 |
| Ground floors of office buildings, corridors and stairs in public buildings. | 80 | 5,000 | 1,000 |
| Assembly rooms, main floors of theaters, ballrooms, gymnasia, or any room likely to be used for drilling or dancing. $\qquad$ | $\} \text { columns } 50$ | \} 5,000 | 1,000 |
| Ordinary stores and light manufacturing, stables and carriage-houses. | 80 | 8,000 | 1,000 |
| Sidewalks in front of building | 300 | 10,000 | 1,000 |
| Warehouses and factories. | from 120 up | Special. | Special. |
| Charging floors for foundries ....... Power-houses, for uncovered floors | " 300 " | The actu gines, boile shall be use less than 200 | 1 weights of enrs, stacks, etc., , but in no case 0 lb . per sq. ft. . |

If heavy concentrations, like safes, armatures, or special machinery, are likely to occur on floors, provision should be made for them.

[^3]
## PART II.

## STRESSES.

## CHAPTER V.

## Graphic Statics.

Equilibrium.-Statics considers forces as at rest and therefore in equilibrium. To have static equilibrium in any system of forces there must be neither translation nor rotation and the following conditions must be fulfilled for coplanar forces (forces in one plane).

$$
\begin{align*}
& \Sigma \text { horizontal components of forces }=0  \tag{a}\\
& \Sigma \text { vertical components of forces }=0  \tag{b}\\
& \Sigma \text { moments of forces about any point }=0 \tag{c}
\end{align*}
$$

Representation of Forces.-A force is determined when its magnitude, line of action, and direction are known, and it may be represented graphically in magnitude by the length of a line, in line of action by the position of the line, and in direction by an arrow placed on the line, pointing in the direction in which the force acts. A force may be considered as applied at any point in its line of action.

Force Triangle.-The resultant, $R$, of the two forces $P_{1}$ and $P_{2}$ meeting at the point $a$ in Fig. 8 is represented in magnitude and direction by the diagonal, $R$, of the parallelogram $a b c d$. The combining of the two forces $P_{1}$ and $P_{2}$ into the force $R$ is termed composition of forces. The reverse process is called resolution of forces.


Fig. 8.

The value of $R$ may also be found from the equation

$$
R^{2}=P_{1}^{2}+P_{2}^{2}+2 P_{1} P_{2} \cos \theta
$$

It is not necessary to construct the entire force parallelogram as in (a) Fig. 8, the force triangle (b) below or (c) above the resultant $R$ being sufficient.

If only one force together with the line of action of the two others be given in a system containing three forces in equilibrium, the magnitude and direction of the two forces may be found by means of the force triangle.

If the resultant $R$ in Fig. 8 is replaced by a force $E$ equal in amount but opposite in direction, the system of forces will be in equilibrium, (a) or (b) Fig. 9. The force $E$ is the equilibrant of the system of forces $P_{1}$ and $P_{2}$.

(a)

(b)

Fig. 9.
It is immaterial in what order the forces are taken in constructing the force triangle, as in Fig. 9, as long as the forces all act in the same direction around the triangle. The force triangle is the foundation of the science of graphic statics.

Force Polygon.-If more than three concurrent forces (forces which meet in a point) are in equilibrium as in (a) Fig. Io, $R_{1}$ in (b) will be the resultant of $P_{1}$ and $P_{2}, R_{2}$ will be the resultant of $R_{1}$ and $P_{3}$,


Fig. 10.
and will also be the equilibrant of $P_{4}$ and $P_{5}$. The force polygon in (b) is therefore only a combination of force triangles. The force polygon for any system of forces may ive constructed as follows:-Begirning at any point draw in succession lines representing in magnitude and direction the given forces, each line beginning where the preceding one ends. If the polygon closes the system of forces is in equilibrium, if not the line joining the first and last points represents the resultant in magnitude and direction. As in the case of the force triangle, it is immaterial in what order the forces are applied as long as they all act in the same direction around the polygon. A•force polygon is analogous to a traverse of a field in which the bearings and the distances are measured progressively around the field in either direction. The conditions for closure in the two cases are also identical.

It will be seen that any side in the force polygon is the equilibrant of all the other sides and that any side reversed in direction is the resultant of all the other sides.

Equilibrium of Concurrent Forces.-The necessary condition for equilbrium of concurrent coplanar forces therefore is that the force polygon close. This is equivalent to the algebraic condition that $\Sigma$ horizontal components of forces $\doteq 0$, and $\Sigma$ vertical components of forces $=0$. If the system of concurrent forces is not in equilibrium the resultant can be found in magnitude and direction by completing
the force polygon. The resultant of a system of concurrent forces is always a single force acting through their point of intersection.

Equilibrium of Non-concurrent Forces.-If the forces are non-concurrent (do not all meet in a common point), the condition that the force polygon close is a necessary, but not a sufficient condition for equilibrium. For example, take the three equal forces $P_{1}, P_{2}$ and $P_{3}$, making an angle of $120^{\circ}$ with each other as in (a) Fig. 11.

(a)

(b)

Negative Moment Moment $=-\mathrm{Ph}$
(C)

Fig. il.
The force polygon (b) closes, but the system is not in equilibrium. The resultant, $R$, of $P_{2}$ and $P_{3}$ acts through their intersection and is parallel to $P_{1}$, but is opposite in direction. The system of forces is in equilibrium for transjation, but is not in equilibrium for rotation.

The resultant of this system is a couple with a moment $=-P_{1} h$, moments clockwise being considered negative and counter clockwise positive, (c) Fig. II. The equilibrant of the system in (a) Fig. II is a couple with a moment $=+P_{1} h$.

A couple.-A couple consists of two parallel forces equal in amount, but opposite in direction. The arm of the couple is the perpendicular distance between the forces. The moment of a couple is equal to one of the forces multiplied by the arm. The moment of a couple is constant about any point in the plane and may be represented
graphically by twice the area of the triangle having one of the forces as a base and the arm of the couple as an altitude. The moment of a force about any point may be represented graphically by twice the area of a triangle as shown in (c) Fig. in.

It will be seen from the preceding discussion that in order that a system of non-concurrent forces be in equilibrium it is necessary that the resultant of all the forces save one shall coincide with the one and be opposite in direction. Three non-concurrent forces can not be in equilibrium unless they are parallel. The resultant of a system of nonconcurrent forces may be a single force or a couple.

Equilibrium Polygon.-First Method.-In Fig. 12 the resultant, $a$, of $P_{1}$ and $P_{2}$ acts through their intersection and is equal and parallel to $a$ in the force polygon (a) ; the resultant, $b$, of $a$ and $P_{3}$ acts through

(a)

(b)

Fig. 12.
their intersection and is equal and parallel to $b$ in the force polygon; the resultant, $c$, of $b$ and $P_{4}$ acts through their intersection and is equal and parallel to $c$ in the force polygon; and finally the resultant, $R$, of $c$ and $P_{5}$ acts through their intersection and is equal and parallel to $R$ in the force polygon. $R$ is therefore the resultant of the entire system of forces. 'If $R$ is replaced by an equal and opposite force, $E$, the system of forces will be in equilibrium. Polygon (a) in Fig. I2 is called
a force polygon and (b) is called a funicular br an equilibrium polygon. It will be seen that the magnitude and direction of the resultant of a system of forces is given by the closing line of the force polygon, and the line of action is given by the equilibrium polygon.

The force polygon in (a) Fig. I3 closes and the resultant, $R$, of

(a)

Resultant Moment $=-P_{6} h$

(b)
Fig. 13.
the forces $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ is parallel and equal to $P_{6}$, and is opposite in direction. The system is in equilibrium for translation, but is not in equilibrium for rotation. The resultant is a couple with a moment $=-P_{6} h$. The equilibrant of the system of forces will be a couple with a moment $=+P_{6} h$. From the preceding discussion it will be seen that if the force polygon for any system of non-concurrent forces closes the resultant will be a couple. If there is perfect equilibrium the arm of the couple will be zero.

Second Method.-Where the forces do not intersect within the limits of the drawing board, or where the forces are parallel, it is not possible to draw the equilibrium polygon as shown in Fig. 12 and Fig. ${ }^{13}$, and the following method is used.

The point $o$, (a) Fig. 14, which is called the pole of the force polygon, is selected so that the strings $a o, b o, c o, d o$ and $e o$ in the equilibrium polygon (b), which are drawn parallel to the corresponding
rays in the force polygon (a), will make good intersections with the forces which they replace or equilibrate.

In the force polygon (a), $P_{1}$ is equilibrated by the imaginary forces represented by the rays $o a$ and $b o$ acting as indicated by the arrows within the triangle; $P_{2}$ is equilibrated by the imaginary forces repre-


Fig. 14.
sented by the rays $o b$ and $c o$ acting as indicated by the arrows within the triangle ; $P_{3}$ is equilibrated by the imaginary forces represented by the rays $o c$ and $d o$ acting as indicated by the arrows within the triangle; and $P_{4}$ is equilibrated by the imaginary forces $o d$ and $e o$ acting as indicated by the arrows within the triangle. The imaginary forces are all neutralized except $a o$ and $o e$, which are seen to be components of the resultant $R$.

To construct the equilibrium polygon, take any point on the line of action of $P_{1}$ and draw strings $o a$ and $o b$ parallel to rays $o a$ and $o b$, $b o$ is the equilibrant of $o a$ and $P_{1}$; through the intersection of string $o b$ and $P_{2}$ draw string $c o$ parallel to ray $c o, c o$ is the equilibrant of $o b$ and $P_{2}$; through the intersection of string $c o$ and $P_{3}$ draw string $d o$ parallel to ray $d o, d o$ is the equilibrant of $c o$ and $P_{3}$; and through the intersection of string $d o$ and $P_{4}$ draw string $e o$ parallel to ray $e o$, $e o$ is the equilibrant of $d o$ and $P_{4}$. Strings $o a$ and $e o$ acting as shown are components of the resultant $R$, which will be parallel to $R$ in the force polygon and acts through the intersections of strings $o a$ and $e o$.

The imaginary forces represented by the rays in the force polygon may be considered as components of the forces and the analysis made on that assumption with equal ease.

It is immaterial in what order the forces are taken in drawing the force polygon, as long as the forces all act in the same direction around the force polygon, and the strings meeting on the lines of the forces in the equilibrium polygon are parallel to the rays drawn to the ends of the same forces in the force polygon.

The imaginary forces $a b, b o, c o, d o, e o$ are represented in magnitude and in direction by the rays of the force polygon to the same scale as the forces $P_{1}, P_{2}, P_{3}, P_{4}$. The strings of the equilibrium polygon represent the imaginary forces in line of action and direction, but not in magnitude.

Reactions of a Simple Beam.-The equilibrium polygon may be used to obtain the reactions of a beam loaded with a load $P$ as in Fig. 15.


Fig. 15.
The force polygon (b) is drawn with a pole $o$ at any convenient point and rays $o a$ and $o c$ are drawn. Now from the fundamental conditions for equilibrium for translation we have $P=R_{1}+R_{2}$. At any convenient point in the line of action of $P$ draw the strings $o a$ and $o c$ parallel to the rays $o a$ and $o c$, respectively, in the force polygon. The imaginary forces $a O$ and $o c$ acting as shown equilibrate the force $P$.

The imaginary force $a o$ acting in a reverse direction as shown is an equilibrant of $R_{1}$, and the imaginary force $c o$ acting in a reverse direction is an equilibrant of $R_{2}$. The remaining equilibrant of $R_{1}$ and of $R_{2}$ must coincide and be equal in amount, but opposite in direction. The string $b o$ is the remaining equilibrant of $R_{1}$ and of $R_{2}$ and is called the closing line of the equilibrium polygon. The ray $b o$ drawn parallel to the string $b$ o divides $P$ in two parts which are equal to the reactions $R_{1}$ and $R_{2}$ (for reactions of overhanging beam see Chapter VIII).

Reactions of a Cantilever Truss.-In the cantilever truss shown in Fig. 16, the direction and point of application $B$ of the reaction $R_{1}$


Fig. 16.
are known, while the point of application $A$ of the reaction $R_{2}$ only is known. The direction of reaction $R_{2}$ may be found by applying the principle that if a body is in equilibrium under the action of three external forces which are not parallel, they must all meet in a common point, $i$. e., the forces must be concurrent. The resultant of all the loads acts through the point $c$, which is also the point of intersection of the reactions $R_{1}$ and $R_{2}$. Having the direction of the reaction $R_{2}$, the values of the reactions may be found by means of a force polygon.

The direction of reaction $R_{2}$ may be found by means of a force and equilibrium polygon as follows: Construct the force polygon (b) with pole $o$ and draw equilibrium polygon (a) starting with point $A$, the
only known point on the reaction $R_{2}$, and draw the polygon as previously described. A line drawn through point $o$ in the force polygon parallel to the closing line of the equilibrium polygon will meet $R_{1}$, drawn parallel to reaction $R_{1}$, in the point $y$, which is also a point on $R_{2}$. The reactions $R_{1}$ and $R_{2}$ are therefore completely determined in direction and amount.

The method just given is the one commonly used for finding the reactions in a truss with one end on rollers (see Chapter VII).

Equilibrium Polygon as a Framed Structure.-In (a) Fig. ${ }_{17}$, the rigid triangle supports the load $P_{1}$. Construct a force polygon


Fig. 17.
by drawing rays $a \mathrm{I}$ and $c \mathrm{I}$ in (b) parallel to sides $a \mathrm{I}$ and $c \mathrm{I}$, respectively, in (a), and through pole I draw i $b$ parallel to side I $b$ in (a). The reactions $R_{1}$ and $R_{2}$ will be given by the force polygon (b), and the rays $\mathrm{I} a, \mathrm{I} c$ and $\mathrm{I} b$ represent the stresses in the members $\mathrm{I} a, \mathrm{I} c$ and I $b$, respectively, in the triangular structure. The stresses in I $a$ and $\mathrm{I} c$ are compression and the stress in $\mathrm{I} b$ is tension, forces acting toward the joint indicating compression and forces acting away from the joint indicating tension. Triangle (a) is therefore an equilibrium polygon and polygon (b) is a force polygon for the force $P_{1}$.

From the preceding discussion it will be seen that the internal stresses at any point or in any section hold in equilibrium the external forces meeting at a point or on either side of the section.

Graphic Moments.-In Fig. 18 (b) is a force polygon and (a) is an equilibrium polygon for the system of forces $P_{1}, P_{2}, P_{3}, P_{4}$. Draw


Fig. 18.
the line $M N=Y$ parallel to the resultant $R$, and with ends on strings $o e$ and $o a$ produced. Let $r$ equal the altitude of the triangle $L M N$ and $H$ equal the altitude of the similar triangle $o e a . H$ is the pole distance of the resultant $R$.

Now in the similar triangles $L M N$ and o e $a$

$$
R: Y:: H: r
$$

and

$$
R r=H Y
$$

But $R r=M=$ moment of resultant $R$ about any point in the line $M N$ and therefore

$$
M=H Y
$$

The statement of the principle just demonstrated is as follows: The moment of any system of coplanar forces about any point in the plane is equal to the intercept on a line drawn through the center of moments and parallel to the resultant of all the forces, cut off by the strings which meet on the resultant, multiplied by the pole distance of the resultant. It should be noted that in all cases the intercept is a distance and the pole distance is a force.

This property of the equilibrium polygon is frequently used in finding the bending moment in beams and trusses which are loaded with vertical loads.

Bending Moments in a Beam.-It is required to find the moment at the point $M$ in the simple beam loaded as in (b) Fig. 19. The


Fig. 19.
moment at $M$ will be the algebraic sum of the moments of the forces to the left of $M$. The moment of $P_{1}=H \times B C$, the moment of $P_{2}=$ $H \times C D$ and the moment of $R_{1}=-H \times B A$. The moment at $M$ will therefore be

$$
M_{1}=H \times B C+H \times C D-H \times B A=H \times A D=-H y
$$

The moment of the forces to the right of $M$ may in like manner be shown to be

$$
M_{1}=+H y
$$

In like manner the bending moment at any point in the beam may be shown to be the ordinate of the equilibrium polygon multiplied by the pole distance. The ordinate is a distance and is measured by the same scale as the beam, while the pole distance is a force and is measured by the same scale as the loads.

To Draw an Equilibrium Polygon Through Three Points. Given a beam loaded as shown in Fig. 20, it is required to draw an equilibrium polygon through the three points $a, b, c$. Construct a force polygon (b) with pole $o$, and draw equilibrium polygon $a b^{\prime} c^{\prime}$ in (a). Point $b^{\prime}$ is determined by drawing through $b$ a line $b b^{\prime}$ parallel to $b_{1} b^{\prime \prime}$ which is the line of action of the resultants of the forces to the


Fig. 20.
left of $b$, acting through points $b$ and $a$. Through $o$ draw $o c^{\prime \prime}$ and $o b^{\prime \prime}$ parallel to closing lines $a c^{\prime}$ and $a b^{\prime}$, respectively. Point $c^{\prime \prime}$ determines the reactions $R_{1}$ and $R_{2}$, and point $b^{\prime \prime}$ determines the reactions acting through $a$ and $b$ of the forces to the left of point $b$.

Points $c^{\prime \prime}$ and $b^{\prime \prime}$ are common to all force polygons, and lines $c^{\prime \prime} o^{\prime}$ and $b^{\prime \prime} o^{\prime}$ drawn parallel to the closing lines of the required equilibrium polygon, $a c$ and $a b$ will meet in the new pole $o^{\prime}$. With pole $o^{\prime}$ the required equilibrium polygon $a b c$ can now be drawn.

Center of Gravity.-To find the center of gravity of the figure shown in (a) Fig. 21, proceed as follows: Divide the figure into elementary figures whose centers of gravity and areas are known. Assume that the areas act as the forces $P_{1}, P_{2}, P_{3}$ through the centers of gravity of the respective figures. Bring the line of action of these forces into the plane of the paper by turning them downward as in (b) and to the right as in (c). Find the resultant of the forces for case (b) and for case (c) by means of force and equilibrium polygons. The intersection of the resultants $R$ will be the center of gravity of the figure. The two sets of forces may be assumed to act at any angle, however, maximum accuracy is given when the forces are assumed to act at right angles. If the figure has an axis of symmetry but one force and equilibrium polygon is required.


Fig. 21.

Moment of Inertia of Forces.-The determination of the moment of inertia of forces and areas by graphics is interesting. There are two methods in common use: (I) Culmann's method, in which the moment of inertia of forces is determined by finding the moment of the moment of forces by means of force and equilibrium polygons, and (2) Mohr's method, in which the moment of inertia of forces is determined from the area of the equilibrium polygon. The moment of inertia of a force about a parallel axis is equal to the force multiplied by the square of the distance between the force and the axis.

Culmann's Method.-It is required to find the moment of inertia, $I$, of the system of forces $P_{1}, P_{2}, P_{3}, P_{4}$, Fig. 22, about the axis $M N$. Construct the force polygon (a) with a pole distance $H$, draw the equilibrium polygon $a b c d e$, and produce the strings until they intersect the axis $M N$. Now the moment of $P_{1}$ about axis $M N$ equals $E D \times H$; moment of $P_{2}$ equals $D C \times H$; moment of $P_{3}$ equals $C B \times$ $H$; moment of $P_{4}$ equals $B A \times H$; and moment of resultant $R$ equals $E A \times H$. With intercepts $E D, D C, C B, B A$, as forces acting in place of $P_{1}, P_{2}, P_{3}, P_{4}$, respectively, construct force polygon (b) with pole distance $H^{\prime}$, and draw equilibrium polygon (c). As before the moments of the forces will be equal to the products of the intercepts and pole distance and the moment of the system of forces represented by the


Fig. 22.
intercepts will be equal to the intercept $G F$ multiplied by pole distance $H^{\prime}$. But the intercepts $E D, D C, C B, B A$, multiplied by the pole distance $H$ equal moments of the forces $P_{1}, P_{2}, P_{3}, P_{4}$, respectively, about the axis $M N$, and the moment of inertia of the system of forces $P_{1}, P_{2}, P_{3}, P_{4}$, about the axis $M N$ will be equal to the intercept $G F$ multiplied by the product of the two pole distances $H$ and $H^{\prime}$, and

$$
I=F G \times H \times H^{\prime}
$$

Mohr's Method.-It is required to find the moment of inertia, $I$, of the system of forces $P_{1}, P_{2}, P_{3}, P_{4}$, Fig. 23, about the axis $M N$. Construct the force polygon (a) with a pole distance $H$, and draw the equilibrium polygon (b). Now the moment of $P_{1}$ about the axis $M N$ equals intercept $F G$ multiplied by the pole distance $H$, and the moment of inertia of $P_{1}$ about the axis $M N$ equals the moment of the moment of $P_{1}$ about the axis, $=F G \times H \times d$. But $F G \times d$ equals twice the area of the triangle $F G A$, and we have the moment of inertia of $P_{1}$ equal to the area of the triangle $F G A \times 2 \mathrm{H}$. In like manner the moment of inertia of $P_{2}$ may be shown equal to area of the triangle $G H B \times 2 H$; moment of inertia of $P_{3}$ equal to area of the triangle $H I C \times 2 H$; and moment of inertia of $P_{4}$ equal to area of the triangle I J D $\times 2 \mathrm{H}$. Summing up these values we have the moment of inertia of the sys-


Fig. 23.
tem of forces equal to the area of the equilibrium polygon multiplied by twice the pole distance, $H$, and

$$
I=\operatorname{area} F A B C D E J F \times 2 H
$$

To find the radius of gyration, $r$, we use the formula

$$
I=R r^{2}
$$

In Fig. 23 the moment of inertia, $I_{r}$, of the resultant of the system of forces about the axis $M N$, can in like manner be shown to be equal to area of the triangle $F E J \times 2 H$.

If the axis $M N$ is made to coincide with the resultant $R$ the moment of inertia $I_{c . g \text {. }}$ of the system will be equal to the area of equilibrium polygon $A B C D E \times 2 H$. This furnishes a graphic proof for the proposition that the moment of inertia, $I$, of any system of parallel forces about an axis parallel to the resultant of the system is equal to the moment of inertia, $I_{\text {c.g. }}$, of the forces about an axis through their centeroid plus the moment of inertia, $I_{r}$, of their resultant about the given axis.

$$
\begin{aligned}
I & =I_{c . g .}+R r^{2} \\
& =I_{c . g .}+I_{r}
\end{aligned}
$$

It will be seen from the foregoing discussion that the moment of inertia of a system of forces about an axis through the centeroid of the system is a minimum.

Moment of Inertia of Areas.-The moment of inertia of an area about an axis in the same plane is equal to the summation of the products of the differential areas which compose the area and the squares of the distances of the differential areas from the axis.

The moment of inertia of an area about a neutral axis (axis through center of gravity of the area) is less than that about any parallel axis, and is the moment of inertia used in the fundamental formula for flexure in beams

$$
M=\frac{S I}{c}
$$

where
$M=$ bending moment at point in inch-pounds;
$S=$ extreme fibre stress in pounds;
$I=$ moment of inertia of section in inches to the fourth power;
$c=$ distance from neutral axis to extreme fibre in inches.
An approximate value of the moment of inertia of an area may be obtained by either of the preceding methods by dividing the area into laminae and assuming each area to be a force acting through the center of gravity of the lamina, the smaller the laminae the greater the accuracy. The true value may be obtained by either of the above methods if each one of the forces is assumed to act at a distance from the given axis equal to the radius of gyration of the area with reference to the axis, $d=\sqrt{a^{2}+r^{2}}$, where $a$ is the distance from the given axis to the center of gravity of the lamina and $r$ is the radius of gyration of the lamina about an axis through its center of gravity. If $A_{0}$ is the area of each lamina the moment of inertia of the lamina will be

$$
I=A_{0} d^{2}=A_{0} a^{2}+A_{0} r^{2}=A_{0} a^{2}+I_{c . g .}
$$

which is the fundamental equation for transferring moments of inertia to parallel axes.

## CHAPTER VI.

## Stresses in Framed Structures.

Methods of Calculation.-The determination of the reactions of simple framed structures usually requires the use of the three fundamental equations of equilibrium

$$
\begin{array}{ll}
\Sigma \text { horizontal components of forces } & =0 \\
\Sigma \text { vertical components of forces } & =0 \\
\Sigma \text { moments of forces about any point } & =0 \tag{c}
\end{array}
$$

Having completely determined the external forces, the internal stresses may be obtained by either equations (a) and (b) (resolution), or equation (c) (moments). These equations may be solved by graphics or by algebra. There are, therefore, four methods of calculating stresses:

> Resolution of Forces $\left\{\begin{array}{l}\text { Algebraic Method } \\ \text { Graphic Method }\end{array}\right.$
> Moments of Forces $\left\{\begin{array}{l}\text { Algebraic Method } \\ \text { Graphic Method }\end{array}\right.$

The stresses in any simple framed structure can be calculated by using any one of the four methods. However, all the methods are not equally well suited to all problems, and there is in general one method that is best suited to each particular problem.

The common practice of dividing methods of calculation of stresses into analytic and graphic methods is meaningless and misleading for the reason that both algebraic and graphic methods are analytical, i.e. capable of analysis.

The loads on trusses are usually considered as concentrated at the jcints in the plane of the loaded chord.

Algebraic Resolution.-In calculating the stresses in a truss by algebraic resolution, the fundamental equations for equilibrium for translation

$$
\begin{align*}
& \Sigma \text { horizontal components of forces }=0  \tag{a}\\
& \Sigma \text { vertical components of forces }=0 \tag{b}
\end{align*}
$$

are applied (a) to each joint, or (b) to the members and forces on one side of a section cut through the truss.
(a) Forces at a Joint.-The reactions having been found, the stresses in the members of the truss shown in Fig. 24 are calculated as

(a)

(b)

(C)

Fig. 24.
follows: Beginning at the left reaction, $R_{1}$, we have by applying equations (a) and (b)

$$
\begin{align*}
& 1-x \sin \theta-1-y \sin \alpha=0  \tag{9}\\
& 1-x \cos \theta-1-y \cos \alpha-R_{1}=0 \tag{10}
\end{align*}
$$

The stresses in members I- $x$ and I- $y$ may be obtained by solving equations (9) and (iо). The direction of the forces which represent the stresses in amount will be determined by the signs of the results, plus signs indicating compression and minus signs indicating tension. Arrows pointing toward the joint indicate that the member is in compression; arrows pointing away from the joint indicate that the member is in tension. The stresses in the members of the truss at the remaining joints in the truss are calculated in the same way.

The direction of the forces and the kind of stress can always be determined by sketching in the force polygon for the forces meeting at the joint as in (c) Fig. 24.

It will be seen from the foregoing that the method of algebraic resolution consists in applying the principle of the force polygon to the external forces and internal stresses at each joint.

Since we have only two fundamental equations for translation (resolution) we can not solve a joint if there are more than two forces or stresses unknown.

Where the lower chord of the truss is horizontal as in Fig. 25, we


Fig. 25.
have by applying fundamental equations (a) and (b) to the joint at the left reaction

$$
\begin{align*}
& 1-x=+R_{1} \sec \theta  \tag{11}\\
& 1-y=-R_{1} \tan \theta \tag{12}
\end{align*}
$$

the plus sign indicating compression and the minus sign tension. Equations (II) and (I2) may be obtained directly from force triangle (c). Equations (II) and (I2) are used in calculating the stresses in trusses with parallel chords and lead to the method of coefficients (Chapter X).
(b) Forces on One Side of a Section.-The principle of resolution of forces may be applied to the structure as a whole or to a portion of the structure.

If the truss shown in Fig. 26 is cut by the plane $A A$, the internal stresses and external forces acting on either segment, as in (b) will be in equilibrium. The external forces acting on the cut members as shown in (b) are equal to the internal stresses in the cut members and are opposite in direction.

Applying equations (a) and (b) to the cut section

$$
\begin{align*}
& 3-y+2-3 \cos \alpha-2-x \sin \theta=0  \tag{13}\\
& 2-3 \sin \alpha-2-x \cos \theta+R_{1}-P_{1}=0 \tag{14}
\end{align*}
$$

Now, if all but two of the external forces are known, the unknowns may be found by solving equations (13) and (14). If more


Fig. 26.
than two external forces are unknown the problem is indeterminate as far as equations (I3) and (I4) are concerned.


Fig. 26a.
In the Warren truss in Fig. 26a the stresses at a joint may be calculated by completing the force polygon as at the left reaction in (b) Fig. 26a. Applying equations (1) and (2) to a section as in (c)

$$
2-x+2-3 \sin \theta-3-y=0
$$

$$
-2-3 \cos \theta-P+R_{1}=0
$$

Now, $R_{1}-P=$ shear in the panel. Therefore the stress in $2-3=-$ $\left(R_{1}-P\right) \sec \theta=$ shear in panel $\times \sec \theta$. This analysis leads directly to the method of coefficients as explained in detail in Chapter X.

Graphic Resolution. -In Fig. 27 the reactions $R_{1}$ and $R_{2}$ are found by means of the force and equilibrium polygons as shown in (b) and (a). The principle of the force polygon is then applied to each

(a)


Joint Lo



(i)

(j)

Joint $U_{z}$



Stress Diagram

Fig. 27.
joint of the structure in turn. Beginning at the joint $L_{0}$ the forces are shown in (c), and the force triangle in (d). The reaction $R_{1}$ is known and acts up, the upper chord stress $\mathrm{I}-\boldsymbol{x}$ acts downward to the left, and the lower chord stress $1-y$ acts to the right, closing the polygon. Stress $1-x$ is compression and stress 1-y is tension, as can be seen by applying the arrows to the members in (c). The force polygon at joint $U_{1}$ is then constructed as in (f). Stress ix acting toward joint $U_{1}$ and load $P_{1}$ acting downward are known, and


(a)
Joint Lo

(e)


Joint $U_{1}$


## Stress Diagram

Fig. 27 a.
stresses I-2 and 2-x are found by completing the polygon. Stresses 2-x and I-2 are compression. The force polygons at joints $L_{1}$ and $U_{2}$ are constructed, in the order given, in the same manner. The known forces at any joint are indicated in direction in the force polygon by double arrows, and the unknown forces are indicated in direction by single arrows.

The stresses in the members of the right segment of the truss are the same as in the left, and the force polygons are, therefore, not constructed for the right segment. The force polygons for all the joints
of the truss are grouped into the stress diagram shown in (k). Compression in the stress diagram and truss is indicated by arrows acting toward the ends of the stress lines and toward the joints, respectively, and tension is indicated by arrows acting away from the ends of the stress lines and away from the joints, respectively. The first time a stress is used a single arrow, and the second time the stress is used a double arrow is used to indicate direction. The stress diagram in (k) Fig. 27 is called a Maxwell diagram or a reciprocal polygon diagram. The notation used is known as Bow's notation. The method of graphic resolution is the method most commonly used for calculating stresses in roof trusses and simple framed structures with inclined chords.

Warren Bridge Truss.-In Fig. 27a the dead load stresses in a Warren bridge truss loaded on the lower chord, are calculated by the method of graphic resolution. In the stress diagram the loads are laid off from the bottom upwards. The details of the solution can easily be followed by reference to Fig. 27a and Fig. 27. It will be seen that the upper chord of the truss is in compression, while the lower chord is in tension.

Algebraic Moments.-The reactions may be found by applying the fundamental equations of equilibrium to the structure as a whole. In the truss in (a) Fig. 28 by taking moments about the right reaction we have


Fig. 28.

$$
\begin{aligned}
& R_{1} \times 6 d=5 P_{1} \times{ }_{3} d \\
& R_{1}=\frac{5}{2} P_{1}=R_{2}
\end{aligned}
$$

To find the stresses in the members of the truss in (a) Fig. 28, proceed as follows: Cut the truss by means of plane $A A$, as in (b), and replace the stresses in the members cut away with external forces. These forces are equal to the stresses in the members in amount, but opposite in direction, and produce equilibrium.

To obtain stress 4-x take center of moments at $L_{2}$, and take moments of external forces

$$
\begin{aligned}
& 4-x \times a+P_{1} \times d-R_{1} \times 2 d=0 \\
& 4-x=\frac{R_{1} \times 2 d-P_{2} d}{a}=\frac{4 P d}{a}(\text { compression })
\end{aligned}
$$

To obtain stress in 4-5 take center of moments at $L_{0}$, and take moments of external forces

$$
\begin{aligned}
& 4-5 \times b-2 P_{1} \times \frac{3}{2} d=0 \\
& 4-5=\frac{3 P_{1} d}{b}(\text { tension })
\end{aligned}
$$

To obtain the stress in 5-y take center of moments at joint $U_{3}$ in (c), and take moments of external forces

$$
\begin{aligned}
& 5-y \times h-R_{1} \times 3 d+3 P_{1} d=0 \\
& 5-y=\frac{3 R_{1} d-3 P_{1} d}{h}=\frac{9 P_{1} d}{2 h} \text { (tension) }
\end{aligned}
$$

To Determine Kind of Stress.-If the unknown external force is always taken as acting from the outside toward the cut section, i.e., is always assumed to cause compression, the sign of the result will indicate the kind of stress. A plus sign will indicate that the assumed direction was correct and that the stress is compression, while a minus sign will indicate that the assumed direction was incorrect and that the stress is tension.

In calculating stresses by algebraic moments, therefore, always observe the following rule:-

Assume the unknown external force as acting from the outside toward the cut section; a plus sign for the result will then show that the stress in the member is compression, and a minus sign will indicate . that the stress in the member is tension.

The stresses in the web members $3-4,2-3,1-2$, are found by taking moments about joint $L_{0}$ as a center. The stresses in $y-3$ and $y-I$ are found by taking moments about joints $U_{2}$ and $U_{1}$, respectively; and the stresses in $x-2$ and $x-1$ are found by taking moments about joint $L_{1}$.

The method of algebraic moments is the most common method used for calculating the stresses in bridge trusses with inclined chords and similar frameworks which carry moving loads.

Stresses in a Bridge Truss.-Calculate reaction $R_{1}$, Fig. 28a, by taking moments of the vertical forces about joints $L_{0}^{\prime}$. Then $R_{1} \times L$


Fig. 28a.
$\doteq 6 P \cdot L / 2$, and $R_{1}=3 P=R_{2}$. To calculate the stress in any member in the truss, pass a section cutting the member in which the stress is required, and cutting away the truss on one side of the section. The stresses in the members cut away are assumed as replaced by external forces acting in the line of the member and equal to the stresses in amount.

To calculate the stresses take the center of moments so that there will be but one unknown stress. The solution of the equation of
moments about this center of moments will give the required stress. To calculate the stress in $4-5$ in (b) Fig. 28a, pass the section $a-a$, cutting away the right side of the truss, and take the center of moments at the intersection of the top and bottom chords. Now $5-x$ and $4-y$ act through the center of moments and produce no moment. The moment of the stress in 4-5 acting from the outside toward the cut section with an arm $c$, holds in equilibrium the reaction $R_{1}$, and the two loads, $P$. The sign of the result will determine the kind of stress, minus for tension and plus for compression. To calculate the stress in the top chord $U_{2} U_{3}$, pass section $b$ - $b$ in (c) and take moments about joint $L_{3}$.

Graphic Moments.-The bending moment at any point in a truss may be found by means of a force and equilibrium polygon as in (b)

and (a) Fig. 29. To determine the stress in $4-x$ cut section $A A$ and take moments about joint $L_{2}$ as in Fig. 28. The moment of the external forces on the left of $L_{2}$ will be $M_{2}=-H y_{2}$, and stress

$$
4-x=-\frac{M_{2}}{a}=+\frac{H y_{2}}{a}
$$

To obtain stress in 4-5 take center of moments at joint $L_{0}$, and stress

$$
4-5=\frac{M_{1}}{b}==\frac{H y_{1}}{b}
$$

To obtain stress in $5-y$ take center of moments at joint $U_{3}$, and stress

$$
5-y=\frac{M_{3}}{h}=-\frac{H y_{3}}{h}
$$

The method of graphic moments is principally used to explain other methods and is little used as a direct method of calculation.

## CHAPTER VII.

## Stresses in simple roof trusses.

Loads.-The stresses in roof trusses are due (1) to the dead load, (2) the snow load, (3) the wind load, and (4) concentrated and moving loads. The stresses due to dead, snow, wind and concentrated loads will be discussed in this chapter in the order given.

Dead Load Stresses.-The dead load is made up of the weight of the truss and roof covering and is usually considered as applied at the panel points of the upper chord in computing stresses in roof trusses. If the purlins do not come at the panel points, the upper chord will have to be designed for both direct stress and stress due to flexure.

The stresses in a Fink truss due to dead load are calculated by graphic resolution in Fig. 30.


Fig. 30.

The loads are laid off, the reactions found, and the stresses calculated beginning at joint $L_{0}$, as explained in Fig. 27. The stress diagram for the right half of the truss need not be drawn where the truss and loads are symmetrical as in Fig. 30; however it gives a check on the accuracy of the work and is well worth the extra time required. The loads $P_{1}$ on the abutments have no effect on the stresses in the truss and may be omitted in this solution.

In calculating the stresses at joint $P_{3}$, the stresses in the members $3-4,4-5$ and $x$-5 are unknown, and the solution appears to be indeterminate. The solution is easily made by cutting out members $4-5$ and $5-6$, and replacing them with the dotted member shown. The stresses in the members in the modified truss are now obtained up to and including stresses $6-x$ and 6-7. Since the stresses $6-x$ and 6-7 are independent of the form of the framework to the left, as can easily be seen by cutting a section through the members $6-x, 6-7$ and $7-y$, the solution can be carried back and the apparent ambiguity removed. The ambiguity can also be removed by calculating the stress in $7-y$ by algebraic moments and substituting it in the stress diagram. It will be noted that all top chord members are in compression and all bottom chord members are in tension.

The dead load stresses can also be calculated by any of the three remaining methods, as previously described.

Dead and Ceiling Load Stresses.-The stresses in a triangular Pratt truss due to dead and ceiling loads, are calculated by graphic resolution in Fig. 3I.

For simplicity the stresses are shown for one side only. The reaction $R_{1}$ is equal to one-half of the entire load on the truss. The solution will appear more clear when it is noted that the stress diagram shown consists of two diagrams, one due to loads on the upper chord and the other due to loads on the lower chord, combined in one, the loads in each case coming between the stresses in the members on each side of the load. The top chord loads are laid off in order downward, while the bottom chord loads are laid off in order upward.


Fig. 31.
Snow Load Stresses.-Large snow storms nearly always occur in still weather, and the maximum snow load will therefore be a uniformly distributed load. A heavy wind may follow a sleet storm and a snow load equal to the minimum given in Fig. 4 should be considered as acting at the same time as the wind load. The stresses due to snow load are found in the same manner as the dead load stresses.

Wind Load Stresses.-The stresses in trusses due to wind load will depend upon the direction and intensity of the wind, and the condition of the end supports. The wind is commonly considered as acting horizontally, and the normal component, as determined by one of the formulas in Fig. 6, is taken.

The ends of the truss may (I) be rigidly fixed to the abutment walls, (2) be equally free to move, or (3) may have one end fixed and the other end on rollers. When both ends of the truss are rigidly fixed to the abutment walls (i) the reactions are parallel to each other
and to the resultant of the external loads; where both ends of the truss are equally free to move (2) the horizontal components of the reactions are equal; and where one end is fixed and the other end is on frictionless rollers (3) the reaction at the roller end will always be vertical. Either case (1) or case (3) is commonly assumed in calculating wind load stresses in trusses. Case (2) is the condition in a portal or framed bent. The vertical components of the reactions are independent of the condition of the ends.

Wind Load Stresses: No Rollers.-The stresses due to a normal wind load, in a Fink truss with both ends fixed to rigid walls, are calculated by graphic resolution in Fig. 32. The reactions are parallel


Fig. 32.
and their sum equals sum of the external loads; they are found by means of force and equilibrium polygons as in Fig. 15 and ${ }^{\circ} \mathrm{Fig}$. ${ }^{2}$

The stress diagram is constructed in the same manner as that for dead loads. Heavy lines in truss and stress diagram indicate compression, and light lines indicate tension.

The ambiguity at joint $P_{3}$ is removed by means of the dotted member as in the case of the dead load stress diagram. It will be seen that there are no stresses in the dotted web members in the right segment of the truss. It is necessary to carry the solution entirely through the truss, beginning at the left reaction and checking up at the right reaction. It will be seen that the load $P_{1}$ has no effect on the stresses in the truss in this case.

Wind Load Stresses: Rollers.-Trusses longer than 70 feet are usually fixed at one end, and are supported on rollers at the other end. The reaction at the roller end is then vertical-the horizontal component of the external wind force being all taken by the fixed end. The wind may come on either side of the truss giving rise to two conditions; (1) rollers leeward and (2) rollers windward, each requiring a separate solution.

Rollers Leeward --The wind load stresses in a triangular Pratt truss with rollers under the leeward side are calculated by graphic resolution in Fig. 33.

The reactions in Fig. 33 were first determined by means of force and equilibrium polygons, on the assumption that they were parallel to each other and to the resultant of the external loads. Then since the reaction at the roller end is vertical and the horizontal component at the fixed end is equal to the horizontal component of the external wind forces, the true reactions were obtained by closing the force polygon.

In order that the truss be in equilibrium under the action of the three external forces $R_{1}, R_{2}$ and the resultant of the wind loads, the three external forces must meet in a point if produced. This furnishes a method for determining the reactions, where the direction and line of action of one and a point in the line of action of the other are known, providing the point of intersection of the three forces comes within the limits of the drawing board.


Fig. 33.

The stress diagram is constructed in the same way as the stress diagram for dead loads. It will be seen that the load $P_{1}$ has no effect on the stresses in the truss in this case. Heavy lines in truss and stress diagram indicate compression and light lines indicate tension.

Rollers Windward.-The wind load stresses in the same triangular Pratt truss as shown in Fig. 33, with rollers under the windward side of the truss are calculated by graphic resolution in Fig. 34.

The true reactions were determined directly by means of force and equilibrium polygons as in Fig. 16. The direction of the reaction $R_{1}$ is known to be vertical, but the direction of the reaction $R_{2}$ is unknown, the only known point in its line of action being the right abutment. The equilibrium polygon is drawn to pass through the right abutment and the direction of the right reaction is determined by connecting the


Fig. 34.
point of intersection of the vertical reaction $R_{1}$ and the line drawn through $o$ parallel to the closing line of the equilibrium polygon, with the lower end of the load line.

Since the vertical components of the reactions are independent of the conditions of the ends of the truss, the vertical components of the reactions in Fig. 33 and Fig. 34 are the same. It will be seen that the load $P_{1}$ produces stress in the members of the truss with rollers windward. If the line of action of $R_{2}$ drops below the joint $P_{5}$ the lower chord of the truss will be in compression, as will be seen by taking moments about $P_{5}$.

Concentrated Load Stresses.-The stresses in a Fink truss due to unequal crane loads are calculated by graphic resolution in Fig. 35.

The reactions were found by means of force and equilibrium polygons. The truss is reduced to three triangles for the loading shown. The solution of this problem is similar to that for ceiling loads in Fig.
31. The moving crane trolley will produce maximum moment when it is at the center of the truss, and this case should be investigated in solving the problem.


Fig. 35.
The method of graphic resolution is commonly used for calculating the stresses in roof trusses and similar structures. For examples of the calculations of stresses in trusses by algebraic resolution, algebraic and graphic moments, see Chapter X.

## CHAPTER VIII.

## Simple Beams.

Reactions.-The reactions of beams may be found by the use of the force and equilibrium polygon as shown in Chapter V. As a second example let it be required to find the reactions of the overhanging beam shown in Fig. 36.


Fig. 36.
Construct a force polygon with pole $o$, as in (b), and draw an squilibrium polygon, as in (a). The ray o d drawn parallel to the closing line $o d$ in (a) determines the reactions. In this case reaction $R_{1}$ is negative. It should be noted that the closing line in an equilibrium polygon must have its ends on the two reactions.

The ordinate to the equilibrium polygon at any point muitiplied by the pole distance, $H$, will give the bending moment in the beam at a point immediately above it.

Moment and Shear in Beams: Concentrated Loads.-The bending moment in the beam shown in Fig. 37 may be found by constructing the force polygon (a) and equilibrium polygon (b) as shown.


Fig. 37.

The bending moment at any point is then equal to the ordinate to the equilibrium polygon at that point multiplied by the pole distance, $H$. The ordinate is to be measured to the same scale as the beam, and the pole distance, $H$, is to be measured to the same scale as the loads in the force polygon. The ordinate is a distance and the pole distance is a force.

Or, if the scale to which the beam is laid off be multiplied by the pole distance measured to the scale of the loads, and this scale be used in measuring the ordinates, the ordinates will be equal to the bending moments at the corresponding points. This is the same as making the pole distance equal to unity. Diagram (b) is called a moment diagram.

Between the left support and the first load the shear is equal to
$R_{1}$; between the loads $P_{1}$ and $P_{2}$ the shear equals $R_{1}-P_{1}$; between the loads $P_{2}$ and $P_{3}$ the shear equals $R_{1}-P_{1}-P_{2}$; between the loads $P_{3}$ and $P_{4}$ the shear equals $R_{1}-P_{1}-P_{2}-P_{3}$; and between load $P_{4}$ and the right reaction the shear equals $R_{1}-P_{1}-P_{2}-P_{3}-P_{4}=-$ $R_{2}$. At load $P_{2}$ the shear changes from positive to negative. Diagram (c) is called a shear diagram. It will be seen that the maximum ordinate in the moment diagram comes at the point of zero shear.

The bending moment at any point in the beam is equal to the algebraic sum of the shear areas on either side of the point in question. From this we see that the shear areas on each side of $P_{2}$ must be equal. This property of the shear diagram depends upon the principle that the bending moment at any point in a simple beam is the definite integral of the shear between either point of support and the point in question. This will be taken up again in the discussion of beams uniformly loaded which will now be considered.

Moment and Shear in Beams: Uniform Loads.-In the beam loaded with a uniform load of $w$ lbs. per lineal foot shown in Fig. 38, the reaction $R_{1}=R_{2}=1 / 2 w L$. At a distance $x$ from the left support, the bending moment is

$$
M=R_{1} x-\frac{w x^{2}}{2}=\frac{w}{2}\left(L x-x^{2}\right)
$$

which is the equation of a parabola.
The parabola may be constructed by means of the force and equilibrium polygons by assuming that the uniform load is concentrated at points in the beam, as is assumed in a bridge truss, and drawing the force and equilibrium polygons in the usual way, as in Fig. 38. The greater the number of segments into which the uniform load is divided the more nearly will the equilibrium polygon approach the bending moment parabola.

The parabola may be constructed without drawing the force and equilibrium polygons as follows: Lay off ordinate $m n=n p=$ bending moment at center of beam $=1 / 8 w L^{2}$. Divide $a p$ and $b p$ into the same number of equal parts and number them as shown in (b). Join the points with like numbers by lines, which will be tangents to the

```
Load=w lbs. per lin.ft.
```



Fig. 38.
required parabola. It will be seen in Fig. 38 that points on the parabola are also obtained.

The shear at any point $x$, will be

$$
S=R_{1}-w x=\frac{1}{2} w L-w x=w\left(\frac{L}{2}-x\right)
$$

which is the equation of the inclined line shown in (c) Fig. 38. The shear at any point is therefore represented by the ordinate to the shear diagram at the given point.

Property of the Shear Diagram.-Integrating the equation for shear between the limits, $x=0$ and $x=x$ we have

$$
\begin{aligned}
\int_{0}^{x} S d x & =\int_{0}^{x} w\left(\frac{L}{2}-x\right) d x \\
& =\frac{w}{2}\left(L x-x^{2}\right)
\end{aligned}
$$

which is the equation for the bending moment at any point, $x$, in the beam, and is also the area of the shear diagram between the limits given. From this we see that the bending moment at any point in a simple beam uniformly loaded is equal to the area of the shear diagram to the left of the point in question. The bending moment is also equal to the algebraic sum of the shear areas on either side of the point.

## CHAPTER IX.

Moving Loads on Beams.
Uniform Moving Loads.-Let the beam in Fig. 39 be loaded with a uniform load of $p$ lbs. per lineal foot, which can be moved on or off the beam.


Fig. 39.
To find the position of the moving load that will produce a maximum moment at a point a distance $a$ from the left support, proceed as follows: Let the end of the uniform load be at a distance $x$ from the left reaction. Then taking moments about $R_{2}$ we have

$$
\begin{equation*}
R_{1}=\frac{(L-x)^{2}}{2 L} p \tag{15}
\end{equation*}
$$

and the moment at the point whose abscissa is $a$ will be

$$
\begin{equation*}
M=R_{1} a-\frac{(a-x)^{2}}{2} p=\frac{(L-x)^{2}}{2 L} a p-\frac{(a-x)^{2}}{2} p \tag{16}
\end{equation*}
$$

Differentiating (16) and placing derivative of $M$ with respect to $x$ equal to zero, we have after solving

$$
\begin{equation*}
x=0 \tag{17}
\end{equation*}
$$

Therefore the maximum moment at any point in a beam will occur when the beam is fully loaded.

The bending moment diagram for a beam loaded with a uniform moving load is constructed as in Fig. 38.

To find the position of the moving load for maximum shear at any point in a beam loaded with a moving uniform load, proceed as follows: The left reaction when the end of the moving load is at a distance $x$ from the left reaction, will be

$$
\begin{equation*}
R_{1}=\frac{(L-x)^{2}}{2 L} p \tag{15}
\end{equation*}
$$

and the shear at a point at a distance $a$ from the left reaction will be

$$
\begin{equation*}
S=R_{1}-(a-x) p=\frac{(L-x)^{2}}{2 L} p-(a-x) p \tag{18}
\end{equation*}
$$

which is the equation of a parabola.
By inspection it can be seen that $S$ will be a maximum when $a=x$. The maximum shear at any point in a beam will therefore occur at the end of the uniform moving load, the beam being fully loaded to the right of the point as in (a) Fig. 39 for maximum positive shear, and fully loaded to the left of the point as in (b) Fig. 39 for maximum negative shear.

If the beam is assumed to be a cantilever beam fixed at $A$, and loaded with a stationary uniform load equal to $p$ lbs. per lineal foot, and an equilibrium polygon be drawn with a force polygon having a pole distance equal to length of span, $L$, the parabola drawn through the points in the equilibrium polygon will be the maximum positive shear diagram, (a) Fig. 39. The ordinate at any point to this shear diagram will represent the maximum positive shear at the point to the same scale as the loads (for the application of this principal to bridge trusses see Fig. 50, Chapter X).

Concentrated Moving Loads.-Let a beam be loaded with concentrated moving loads at fixed distances apart as shown in Fig. 40.


Fig. 40.

To find the position of the loads for maximum moment and the amount of the maximum moment, proceed as follows: The load $P_{2}$ will be considered first. Let $x$, be the distance of the load $P_{2}$ from the left support when the loads produce a maximum moment under load $P_{2}$.

Taking moments about $R_{2}$ we have

$$
\begin{align*}
R_{1}= & \frac{P_{1}(L-x+a)+P_{2}(L-x)+P_{3}(L-x-b)+P_{4}(L-x-b-c)}{L} \\
& =\frac{(L-x)\left(P_{1}+P_{2}+P_{3}+P_{4}\right)+P_{1} a-P_{3} b-P_{4}(b+c)}{L} \tag{19}
\end{align*}
$$

and the bending moment under load $P_{2}$ will be

$$
\begin{align*}
M & =R_{1} x-P_{1} a \\
& =\frac{x(L-x)\left(P_{1}+P_{2}+P_{3}+P_{4}\right)+x\left(P_{1} a-P_{3} b-P_{4}(b+c)\right)}{L}-P_{1} a \tag{20}
\end{align*}
$$

Differentiating (20) we have

$$
\begin{equation*}
\frac{d M}{d x}=\frac{(L-2 x)\left(P_{1}+P_{2}+P_{3}+P_{4}\right)+P_{1} a-P_{3} b-P_{4}(b+c)}{L}=0 \tag{21}
\end{equation*}
$$

and solving (2I) for $x$ we have

$$
\begin{equation*}
x=\frac{L}{2}+\frac{P_{1} a-P_{3} b-P_{4}(b+c)}{2\left(P_{1}+P_{2}+P_{3}+P_{4}\right)} \tag{22}
\end{equation*}
$$

Now $P_{1} a-P_{3} b-P_{4}(b+c)$, is the static moment of the loads about $P_{2}$ and

$$
\frac{P_{1} a-P_{3} b-P_{4}(b+c)}{P_{1}+P_{2}+P_{3}+P_{4}}=\text { distance from } P_{2} \text { to }
$$ center of the gravity of all the loads.

Therefore, for a maximum moment under load $P_{2}$, it must be as far from one end as the center of gravity of all the loads is from the other end of the beam, Fig. 40.

The above criterion holds for all the loads on the beam. ©The only way to find which load produces the greatest maximum is to try each one, however, it is usually possible to determine by inspection which load will produce a maximum bending moment. For example the maximum moment in the beam in Fig. 40 will certainly come under the heavy load $P_{2}$. The above proof may be generalized without difficulty and the criterion above shown to be of general application.

For two equal loads $P=P$ at a fixed distance, $a$, apart as in the case of a traveling crane, Fig. 4I, the maximum moment will occur under one of the loads when


Fig. 4I.
Taking moments about the right reaction we have

$$
\begin{equation*}
R_{1}=\frac{P\left(L-\frac{a}{2}\right)}{L} \tag{23}
\end{equation*}
$$

and the maximum bending moment is

$$
\begin{gather*}
M=R_{1}\left(\frac{L}{2}-\frac{a}{4}\right) \\
=\frac{P\left(L-\frac{a}{2}\right)^{2}}{2 L} \tag{24}
\end{gather*}
$$

There will be a maximum moment when either of the loads satisfies the above criterion, the bending moments being equal.

By equating the maximum moment above to the moment due to a single load at the center of the beam, it will be found that the above criterion holds only when

$$
a<0.586 L
$$

Where two unequal moving loads are at a fixed distance apart the greater maximum bending moment will always come under the heavier jad.

The maximum end shear at the left support for a system of concentrated loads on a simple beam, as in Fig. 40, will occur when the left reaction, $R_{1}$, is a maximum. This will occur when one of the wheels is infinitely near the left abutment (usually said to be over the left abutment). The load which produces maximum end shear can be easily found by trial.

The maximum shear at any point in the beam will occur when one of the loads is over the point. The criterion for determining which load will cause a maximum shear at any point, $x$, in a beam will now be determined.

In Fig. 40 , let the total load on the beam, $P_{1}+P_{2}+P_{3}+P_{4}=$ $W$, and let $x$ be the distance from the left support to the point at which we wish to determine the maximum shear.

When load $P_{1}$ is at the point, the shear will be equal to the left reaction, which is found by substituting $x+a$ for $x$ in (19) to be

$$
S_{1}=R_{1}=\frac{(L-x-a) W+P_{1} a-P_{3} b-P_{4}(b+c)}{L}
$$

and when $P_{2}$ is at the point the shear will be

$$
S_{2}=\frac{(L-x) W+P_{1} a-P_{3} b-P_{4}(b+c)}{L}-P_{1}
$$

Subtracting $S_{2}$ from $S_{1}$ we have

$$
S_{1}-S_{2}=\frac{P_{1} L-W a}{L}
$$

Now $S_{1}$ will be greater than $S_{2}$ if $P_{1} L$ is greater than $W a$, or if

$$
\frac{P_{1} L}{a}>W
$$

The criterion for maximum shear at any point therefore is as follows:

The maximum positive shear in any section of a beam occurs when the foremost load is at the section, provided $W$ is not greater than $\frac{P_{1} L}{a}$ If $W$ is greater than $\frac{P_{1} L}{a}$, the greatest shear will occur when some succeeding load is at the point.

Having determined the position of the moving loads for maximum moment and maximum shear, the amount of the moment and shear can be obtained as in the case of beams loaded with stationary ioads.

## CHAPTER X.

## Stresses in Bridge `Trusses.

Method of Loading.-The loads on highway bridges, and in many cases on railway bridges as well, are assumed to be concentrated at the joints of the loaded chord, and if the panels of the truss are equal the joint loads are equal. The assumption of joint loads simplifies the solution and gives values for the stresses that are on the safe side. Equal joint loads will be assumed in this discussion.

Algebraic Resolution.*-Let the Warren truss in Fig. 42 have dead loads applied at the joints as shown. From the fundamental equations for equilibrium for translation, reaction $R_{1}=R_{2}=3 \mathrm{~W}$.


Dead Load Coefficients
Fig. 42.
The stresses in the members are calculated as follows: Resolving at the left reaction, stress in $\mathrm{r}-x=+3 W \sec \theta$, and stress in $\mathrm{I}-y=$ $-3 W \tan \theta$. Resolving at first joint in upper chord, stress in $\mathrm{I}-2=$ $-3 W \sec \theta$, and stress in $2-x=+6 W \tan \theta$. Resolving at second joint in lower chord, stress $2-3=+2 W \sec \theta$, and stress $3-y=-$ $8 W \tan \theta$. Ind in like manner the stresses in the remaining members are found as shown. The coefficients shown in Fig. 42 for the chords are to be multiplied by $W \cdot \tan \theta$; while those for the webs are to be multiplied by $W \sec \theta$.

[^4]It will be seen that the coefficients for the web stresses are equal to the shear in the respective panels. Having found the shears in the different panels of the truss, the remaining coefficients may be found by resolution. Pass a section through any panel and the algebraic sum of the coefficients will be equal to zero. Therefore, if two coefficients are known, the third may be found by addition.

Beginning with member $\mathrm{I}-y$, which is known and equals -3 ;

$$
\begin{aligned}
& \text { coefficient of } 2-x=-(-3-3)=+6 ; \\
& \text { coefficient of } 3-y=-(+6+2)=-8 ; \\
& \text { coefficient of } 4-x=-(-8-2)=+10 ; \\
& \text { coefficient of } 5-y=-(+10+1)=-11 ; \\
& \text { coefficient of } 6-x=-(-11-1)=+12 ; \\
& \text { coefficient of } 7-y=-(+12+0)=-12
\end{aligned}
$$

Loading for Maximum Stresses. -The effect of different positions of the loads on a Warren truss will now be investigated.

Let the truss in Fig. 43 be loaded with a single load $P$ as shown.


Fig. 43.
The left reaction, $R_{1}=6 / 7 P$, and the right reaction, $R_{2}=P / 7$. The stress in 1- $y=-6 / 7 P \tan \theta$, and stress in $\mathrm{I}-x=+6 / 7 P \sec \theta$. The stress in $\mathrm{I}-2=-6 / 7 P \sec \theta$ and stress in $2-3=-1 / 7 P \sec \theta$, etc. The remaining coefficients are found as in the case of dead loads by adding coefficients algebraically and changing the sign of the result.

In Fig. 44 the coefficients for a load applied at each joint in turn are shown for the different members; the coefficients for the load on left being given in the top line.


Fig. 44.
The following conclusions may be drawn from Fig. 44.
(I) All loads produce a compressive stress in the top chord and a tensile stress in the bottom chord.
(2) All the loads on one side of a panel produce the same kind of stress in the web members that are inclined in the same direction on that side.

For maximum stresses in the chords, therefore, the truss should be fully loaded. For maximum stresses in the web members the longer segment into which the panel divides the truss should be fully loaded; while for minimum stresses in the web members the shorter segment of the truss should be fully loaded.

The conditions for maximum loading of a truss with equal joint loads are therefore seen to be essentially the same as the maximum loading of a beam with a uniform live load.

Stresses in Warren Truss.-The coefficients for maximum and minimum stresses in a Warren truss due to live load are shown in Fig. 45.

These coefficients are seen to be the algebraic sum of the coefficients for the individual loads given in Fig. 44. The live load chord coefficients are the same as for dead load, and if found directly are found in the same manner.

The maximum web coefficients may be found directly by taking off one load at a time beginning at the left. The left reaction, which may
be found by algebraic moments, will in each case be the coefficient of the maximum stress in the panel to the left of the first load. A rule for finding the coefficient of left reaction for any loading is as follows: Multiply the number of loads on the truss by the number of loads plus unity, and divide the product by twice the number of panels in the truss and the result will be the coefficient of the left reaction.


Fig. 45.
If the second differences of the maximum coefficients in the web members are calculated, they will be found to be constant, which shows that the coefficients are equal to the ordinates of a parabola.
Coefficients, First differences, Second differences,

| 2I |  | I5 |  | IO |  | 6 |  | 3 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 5 |  | 4 |  | 3 |  | 2 |

Second differences of numerators of web coefficients.
This relation gives an easy method for checking up the maximum web coefficients, since the numerators of the coefficients are always the same beginning with unity in the first panel on the right and progressing in order $1,3,6$, 10, etc.; the denominators always being the number of panels in the truss.

It should be noted that in the Warren truss the members meeting on the unloaded chord always have stresses equal in amount, but opposite in sign.

Stresses in Pratt Truss.- In the Pratt truss the diagonal members are tension members and counters (see dotted members in (c) Fig. 46) must be supplied where there is a reversal of stress. The coefficients for the dead and live load stresses in the Pratt truss shown in (a) and (b)

Fig. 46, are inund in the same manner as for a Warren truss. The member $U_{1} L_{1}$ acts as a hanger and carries only the load at its lower end. The stresses in the chords are found by multiplying the coefficients by $W \tan \theta$, and in the inclined webs by multiplying the coefficients by $W \sec \theta$. The stresses in the posts are equal to the vertical components of the stresses in the inclined web members meeting them on the unloaded chord.

(a)


Live Load Coefficients and Stresses
Live Load $=16$ Tons per Joint. $\operatorname{Sec} \theta=1.28 \cdot \operatorname{Tan} \theta=0.80$
(b)


Maximum Stresses

Minimum Stresses
(C)

Fig. 46.

The maximum chord stresses shown on the left of (c) are equal to the sum of the live and dead load chord stresses. The minimum chord stresses shown on the right of (c) are equal to the dead load chord stresses.

The maximum and minimum web stresses are found by adding algebraically the stresses in the members due to dead and live loads.

Since the diagonal web members in a Pratt truss can take tension only, counters must be supplied as $U_{3} L_{1}{ }_{2}$ in panel $L_{2}{ }_{2} L_{3}$. The tensile stress in a counter in a panel of a Pratt truss is always equal to the compressive stress that would occur in the main diagonal web member in the panel if it were possible for it to take compression. Care must always be used to calculate the corresponding stresses in the vertical posts.

Graphic Resolution.-The stresses in a Warren truss due to dead loads are calculated by graphic resolution in Fig. 47. The solution is the same as for ceiling loads in a roof truss. The loads beginning with the first load on the left are laid off from the bottom upwards. The analysis of the solution is shown on the stress diagram and truss and needs no explanation.

From the stresses in the members it is seen (a) that web members meeting on the unloaded chord have stresses equal in amount but opposite in sign, and (b) that the lower chord stresses are the arithmetical means of the upper chord stresses on each side.

The live load chord stresses may be obtained from the stress diagram in Fig. 47 by changing the scale or by multiplying the dead load stresses by a constant.

The live load web stresses may be obtained by calculating the left reactions for the loading that gives a maximum shear in the panel (no loads occurring between the panel and the left reaction), and then constructing the stress diagram up to the member whose stress is required. In a truss with parallel chords it is only necessary to calculate the stress in the first web member for any given reaction since the shear is constant between the left reaction and the panel in questicn.

The live load web stresses may all be obtained from a single dagram as follows: With an assumed left reaction of, say, $100,000 \mathrm{lbs}$. construct a stress diagram on the assumption that the truss is a cantilever fixed at the right abutment and that there are no loads on the


Dead Load= 700 lbs . per Warren Truss;
lineal foot of truss.
Span $120^{\prime} 0^{\prime \prime}$
$W=700 \times 20=14000 \mathrm{lbs}$.
$=7$ tons.


Fig. 47.
truss. Then the maximum stress in any web member will be equal to the stress scaled from the diagram, divided by 100,000 , multiplied by the left reaction that produces the maximum stress. This method is a very convenient one for finding the stresses in a truss with inclined chords.

Algebraic Moments.-The dead and live load stresses in a truss with inclined chords are calculated by algebraic moments in Fig. 48. The conditions for maximum loading are the same in this truss as in a truss with parallel chords, and are as follows: Maximum chord stresses occur when all loads are on; minimum chord stresses occur when no live load is on; maximum web stresses in main members occur when the longer segment of the truss is loaded; and minimum stresses in main members and maximum stresses in counters occur when the shorter segment of the truss is loaded. An apparent exception to the latter rule occurs in post $U_{2} L_{2}$ which has a maximum stress when the truss is fully loaded with dead and live loads.


To find the stress in member $U_{1} L_{2}$ take moments about point $A$, the intersection of the upper and lower chords produced. The dead load stress is then given by the equation

$$
\begin{aligned}
& U_{1} L_{2} \times 70.7+R_{1} \times 60-W \times 80=0 \\
& U_{1} L_{2} \times 70.7=-6 \times 60+3 \times 80=-120 \text { foot-tons } \\
& U_{1} L_{2}=-1.70 \text { tons }
\end{aligned}
$$

The maximum live load stress occurs when all loads are on except $L_{1}$, and

$$
\begin{aligned}
& U_{1} L_{2} \times 70.7+R_{1} \times 60=0 \\
& U_{1} L_{2} \times 70.7=-\frac{6}{5} P \times 60=-576 \text { foot-tons } \\
& U_{1} L_{2}=-8.14 \text { tons }
\end{aligned}
$$

The maximum live load stress in counter $U_{2} L_{1}$ occurs with a load at $L_{1}$, and is given by the equation

$$
\begin{aligned}
& -U_{2} L_{1} \times 62.43+R_{1} \times 60-P \times 80=0 \\
& U_{2} L_{1} \times 62.43=\frac{4}{5} P \times 60-8 \times 80 \\
& U_{2} L_{1}=-4.10 \text { tons }
\end{aligned}
$$

The dead load stress in counter $U_{2} L_{1}$ when main member $U_{1} L_{2}$ is not acting will be

$$
\begin{gathered}
U_{2} L_{1} \times 62.43=+120 \text { foot-tons } \\
U_{2} L_{1}=+1.92 \text { tons }
\end{gathered}
$$

The maximum stress in $U_{1} L_{2}$ is therefore - $1.70-8.14=-$ 9.84 tons, and the minimum stress is zero. The maximum stress in counter $U_{2} L_{1}$ is $+1.92-4.10=-2.18$ tons, and the minimum stress is zero.

The stresses in the remaining members may be found in the same manner. To obtain stresses in upper chords $U_{1} U_{2}$ and $U_{2} U_{2}$, take moments about $L_{2}$ as a center; to obtain stress in lower chord $L_{0} L_{1}$ take moments about $U_{1}$ as a center. The dead load and maximum live load stress in post $U_{2} L_{2}$ is equal to the vertical component of the dead and live loads, respectively, in upper chord $U_{1} U_{2}$. The stresses in $L_{0} U_{1}$, $L_{0} L_{1}, L_{2} L_{1}^{1}{ }_{2}, U_{2} U^{1}{ }_{2}$ and $U_{2} L^{1}{ }_{2}$ are most easily found by algebraic resolution.

Graphic Moments.-The dead load stresses in the chords of a Warren truss are calculated by graphic moments in Fig. 49.

Bending Moment Polygon.-The upper chord stresses are given by the ordinates to the bending moment parabola direct, while the lower chord stresses are arithmetical means of the upper chord stresses
on each side, and are given by the ordinates to the chords of the parabola as shown in Fig. 49.

The parabola is constructed as follows: The mid-ordinate, $4 j$, is made equal to the bending moment at the center of the truss divided by the depth ; in this case the mid-ordinate is the stress in $6-x$; if the num-


Fig. 49.
ber of panels in the truss were odd the mid-ordinate would not be equal to any chord stress. The parabola is then constructed as shown in Fig. 49. The live load chord stresses may be found from Fig. 49 by changing the scale or by multiplying the dead load chord stresses by a constant.

Shear Polygon.-In Chapter IX it was shown that the maximum shear in a beam at any point could be represented by the ordinate to a parabola at any point. The same principle holds for a bridge truss loaded with equal joint loads, as will now be proved.

In Fig. 50 assume that the simple Warren truss is fixed at the left end as shown, and that right reaction $R_{1}$ is not acting. Then with all joints fully loaded with a live load $P$, construct a force polygon as shown, with pole $o$ and pole distance $H=$ span $L$, and beginning at point $a$ in the load line of the force polygon construct. the equilibrium polygon $a g h$ for the cantilever truss.

Now the bending moment at the left support will be equal to


Fig. 50.
ordinate $Y_{1}$ multiplied by the pole distance $H$. But the truss is a simple truss and the moment of the right reaction will be equal to the moment at the left abutment and

$$
Y_{1} H=R_{1} L
$$

and since $H=L$

$$
\begin{aligned}
Y_{1} L & =R_{1} L \\
Y_{1} & =R_{1}
\end{aligned}
$$

and

Now, with the loads remaining stationary, move the truss one panel to the right as shown by the dotted truss. With the same force polygon draw a new equilibrium polygon as above. This equilibrium polygon will be identical with a part of the first equilibrium polygon as shown. As above, the befding moment at left reaction is $Y_{3} H=Y_{3} L=$ $R_{3} L$, and $Y_{3}=R_{3}$. In like manner $Y_{5}$ can be shown to be the right reaction with three loads on, etc. Since the bridge is symmetrical with reference to the center line, the ordinates to the shear polygon in Fig. 50, are equal to the maximum shears in the panel to the right of the ordinate as the load moves off the bridge to the right.

To draw the shear parabola direct, without the use of the force and equilibrium polygons proceed as follows: At a distance of a panel length to the left of the left abutment lay off to scale a load line equal to one-half the total load on the truss, divide this load line into as many parts as there are panels in the truss, and beginning at the top, which call r , number the points of division of the load line $1,2,3$, etc., as in Fig. 49. Drop vertical lines from the panel points and number them $1,2,3$, etc., beginning with the load line, which will be numbered I , the left reaction numbered 2 , etc. Now connect the numbered points in the load line with the point $f$, which is under the first panel to the left of the right abutment ; and the intersection of like numbered lines will give points on the shear parabola. It should be noted that the line $h g$ is a secant to the parabola and not a tangent as might be expected.

The dead load shear is laid off positive downward in Fig. 50 to the same scale as the live load shears, and the maximum and minimum shears due to dead and live loads are added graphically. The stresses in the web members are calculated graphically in Fig. 50.

Wheel Loads.-The criteria for maximum moments and shears in bridge trusses loaded with wheel loads are as follows:
(1) Maximum Moment at any joint in a bridge loaded with wheel loads will occur when the average load on the left of the section is the same as the average load on the whole span.
(2) Maximum Shear in any panel in a bridge loaded with wheel loads will occur when the load on the panel is equal to the load on the bridge divided by the number of panels.

These criteria will be proved by means of the influence diagram in the following discussion.

For a more complete discussion of the subject see standard books on bridge design. For the calculation of stresses in simple trusses see problems in Appendix II.

INFLUENCE DIAGRAMS.-An influence diagram (commonly called an influence line) shows the variation of the effect of a moving load or a system of loads on a beam or truss. The difference between bending moment or shear diagrams and influence diagrams is that the bending moment and the shear diagram gives the moment and shear, respectively, at any point for a fixed system of loads, while an influence diagram gives the moment or shear, etc., at a fixed point for a moving system of loads. Influence diagrams are used principally for finding the position of moving loads that will produce maximum shears, moments, reactions, or stresses, although they may be used for calculating the quantities themselves. For convenience where a number of loads are considered the influence diagrams are drawn for a single unit load. The unit influence diagram may then be used for any load by multiplying by the given load. The unit influence diagram will be referred to in the following discussion.

Maximum Moment in a Truss or Beam.-Let $P_{1}$ in Fig. 50a, represent the summation of the moving loads to the left of the panel point $2^{\prime}$ and $P_{2}$ be the summation of the moving loads to the right.


Fig. 50a. Influence Diagram for Moments.
The influence diagram for the point $2^{\prime}$ is constructed by calculating the bending moment at $2^{\prime}$ due to a unit load, $=\frac{a(L-a)}{L}=$ ordinate
$2-4$, and drawing lines $1-2$ and $2-3$. The equation of the line $1-2$ is

$$
y=\frac{x(L-a)}{L}
$$

and the equation of the line $2-3$ is

$$
y=\frac{a(L-x)}{L}
$$

Now when $x=a$ the two lines have a common ordinate which is equal to $\frac{a(L-a)}{L}$. Also when $x=L$ the ordinate to $1-2=L-a$; while when $x=0$, the ordinate to $2-3$ is $a$, as is seen in Fig. 50a. This relation gives an easy method of constructing an influence diagram for moments for any point in a beam or truss.

Now in Fig. 50a the bending moment at $2^{\prime}$ due to the loads $P_{1}$ and $P_{2}$ is

$$
\begin{equation*}
M=P_{1} y_{1}+P_{2} y_{2} \tag{a}
\end{equation*}
$$

Now move the loads $P_{1}$ and $P_{2}$ a short distance to the left, the distance being assumed so small that the distribution of the loads will not be changed, and

$$
\begin{equation*}
M+d M=P_{1}\left(y_{1}-d y_{1}\right)+P_{2}\left(y_{2}+d y_{2}\right) \tag{b}
\end{equation*}
$$

Subtracting (a) from (b) and placing $d M=0$, we have

$$
d M=-P_{1} d y_{1}+P_{2} d y_{2}=0
$$

But $d y_{1}=d x \tan a_{1}=d x \frac{L-a}{L}$, and $d y_{2}=d x \tan a_{2}=d x \frac{a}{L}$, and

$$
d M=-P_{1} \frac{L-a}{L} d x+P_{2} \frac{a}{L} d x=0
$$

from which $P_{1} a-P_{1} L+P_{2} a=\mathrm{o}$, and $\left(P_{1}+P_{2}\right) a=P_{1} L$

Solving, we have

$$
\begin{equation*}
\frac{P_{1}}{a}=\frac{P_{1}+P_{2}}{L} \tag{c}
\end{equation*}
$$

From (c) it follows that the maximum bending moment at $2^{\prime}$ occurs when the average load on the left of the section is the same as the average load on the entire bridge.

Uniform Loads.-In Fig. 50a, the bending moment at 2' due to a uniform load $p d x$ will be $p y d x$ in (a). But $y d x$ is the area of the influence diagram under the uniform load, and the bending moment at $2^{\prime}$ due to a uniform load will be equal to the area of the influence diagram covered by the load, multiplied by the load per unit of length. For a uniform load, $p$, covering the entire span the bending moment at $2^{\prime}$ will be $p$ times the area of the influence diagram $1-2-3$. For a uniform load the bridge must be fully loaded to obtain maximum bending moment at any point. It will be seen that the general criterion for maximum moment is satisfied when the bridge is fully loaded with a uniform load.

Maximum Shear in a Truss.-Let $P_{1}, P_{2}$, and $P_{3}$ in Fig. 50b represent the loads on the left of the panel, on the panel, and on the right of the $(m+1)$ st. panel, respectively. It is required to find the position of the loads for a maximum shear in the panel.

With a load unity at $2^{\prime}$ the shear in the panel is $-\frac{m}{n}$, and $\mathrm{I}-2$ is the influence shear line for loads to the left of the panel. With a load unity at $3^{\prime}$ the shear in the panel is $\frac{n-m-1}{n}$, and $3-4$ is the influence shear line for loads to the right of the panel. For a load on the panel the shear will vary from $-\frac{m}{n}$ at $2^{\prime}$ to $\frac{n-m-\mathbf{I}}{n}$ at $3^{\prime}$, and the line $2-3$ is the influence shear line for loads on the panel.

The influence diagram for the entire span is the polygon $1-2-3-4$. It will be seen that the lines $\mathrm{I}-2$ and 3-4 are parallel, and are at a distance unity apart.

The total shear in the panel will then be

$$
\begin{equation*}
S=-P_{1} y_{1}+P_{2} y_{2}+P_{3} y_{3} \tag{d}
\end{equation*}
$$

Now move the loads a short distance to the left, the distance being assumed so small that the distribution of the loads will not be changed, and
$S+d S=-P_{1}\left(y_{1}-d y_{1}\right)+P_{2}\left(y_{2}-d y_{2}\right)+P_{3}\left(y_{3}+d y_{3}\right)$
Subtracting (d) from (e) and solving for a maximum

$$
d S=P_{1} d y_{1}-P_{2} d y_{2}+P_{3} d y_{3}=0
$$

But

$$
\begin{aligned}
& d y_{1}=d x \tan a_{1}=d x \frac{\mathrm{I}}{n l} \\
& d y_{2}=d x \tan a_{2}=d \times \frac{n-\mathrm{I}}{n l} \\
& d y_{3}=d x \tan a_{3}=d x \frac{\mathrm{I}}{n l}
\end{aligned}
$$



Fig. 50b. Influence Diagram for Shear.
and substituting we have

$$
\begin{aligned}
d S= & P_{1} \frac{d x}{n l}-P_{2} d x \frac{n-\mathrm{I}}{n l}+P_{3} \frac{d x}{n l}=0 \\
& P_{1}-\mathrm{P}_{2}(n-\mathrm{I})+P_{3}=0
\end{aligned}
$$

and

$$
P_{1}+P_{2}+P_{3}=P_{2} n
$$

and

$$
\begin{equation*}
P_{2}=\frac{P_{1}+P_{2}+P_{3}}{n} \tag{f}
\end{equation*}
$$

From (f) it follows that the maximum shear in the panel will occur when the load on the panel is equal to the load on the bridge divided by the number of panels in the bridge.

Uniform Loads.-From Fig. 50b, it will be seen that for a uniform load the maximum shear in the panel will occur when the uniform load extends from the right abutment to that point in the panel where the line $2-3$ passes through the line $\mathrm{I}-4$ (where the shear changes sign). For a minimum shear in the panel (maximum shear of the opposite sign) the load should extend from the left abutment to the point in the panel where the shear changes sign. For equal joint loads, load the longer segment for a maximum shear in the panel, and load the shorter segment for a minimum shear in the panel.

Maximum Floor Beam Reaction.-It is required to find the maximum load on the floor beam at $2^{\prime}$ in (a) Fig. 50 c for the loads carried by the floor stringers in the panels $I^{\prime}-2^{\prime}$ and $2^{\prime}-3^{\prime}$.

In (a) the diagram $1-2-3$ is the influence diagram for the shears at $2^{\prime}$ due to a load unity at any point in either panel. In (b) the diagram $1-2-3$ is the influence diagram for bending moment at $2^{\prime}$ for a unit load at any point in the beam. Now diagram in (a) differs from diagram in (b) only in the value of the ordinate $2-4$. It will be seen that the reaction at $2^{\prime}$ in (a) may be obtained from the diagram in (b) for any system of loads if the ordinates are multiplied by $\frac{d_{1}+d_{2}}{d_{1} d_{2}}$. We can therefore use diagram (b) for obtaining the maximum floor beam reaction if we multiply all ordinates by $\frac{d_{1}+d_{2}}{d_{1} d_{2}}$.

To obtain the maximum floor beam reaction, therefore, take a simple beam equal to the sum of the two panel lengths, and find the maximum bending moment at a point in the beam corresponding to the panel point. This maximum moment multiplied by $\frac{d_{1}+d_{2}}{d_{1} d_{2}}$ will be the maximum floor beam reaction. If the two panels are equal in
length the maximum bending moment at the center of the beam multiplied by $\frac{2}{d}$, where $d$ is the panel length, will give the maximum floor beam reaction.


Fig. 5oc. Influence Diagram for Maximum Floor Beam Reaction.
Maximum Moment in the Unloaded Chord of a Through Warren Truss.-Let $P_{1}$ in Fig. 5od represent the summation of the moving loads on the left of the panel $4^{\prime}-5^{\prime}, P_{2}$ represent the summation of the


Fig. 50d. Influence Diagram for Moments in the Unloaded Chord of a Through Warren Truss.
moving loads on the panel, and $P_{3}$ represent the summation of the moving loads to the right of the panel. The influence diagram for the point 2 is the diagram $\mathrm{I}-4-5-3$, the lines $\mathrm{I}-4$ and $5-3$ are the same as for

Maximum Stresses in a Bridge with Inclined Chords. 82 a
a point on the loaded chord, while the influence line for the panel $4^{\prime}-5^{\prime}$ is the line $4-5$.

Now the bending moment at 2 due to the three loads is

$$
\begin{equation*}
M=P_{1} \cdot y_{1}+P_{2} \cdot y_{2}+P_{3} \cdot y_{3} \tag{g}
\end{equation*}
$$

Now move the loads $P_{1}, P_{2}, P_{3}$ a short distance to the left, the distance being assumed so small that the distribution of the loads will not be changed, and

$$
\begin{equation*}
M+d M=P_{1}\left(y_{1}-d y_{1}\right)+P_{2}\left(y_{2}-d y_{2}\right)+P_{3}\left(y_{3}+d y_{3}\right) \tag{h}
\end{equation*}
$$

Subtracting (g) from (h), and solving for a maximum

$$
\begin{equation*}
d M=-P_{1} \cdot d y_{1}-P_{2} \cdot d y_{2}+P_{3} \cdot d y_{3}=0 \tag{i}
\end{equation*}
$$

Now $d y_{1}=d x \cdot \tan \alpha_{1}, d y_{2}=d x \cdot \tan \alpha_{2}$, and $d y_{3}=d x \cdot \tan \alpha_{3}$. $\tan \alpha_{1}=(L-a) / L, \tan \alpha_{3}=a / L$, and $\tan \alpha_{2}$

$$
=\frac{[L-(a-b+l)] \tan \alpha_{3}-(a-b) \tan \alpha_{1}}{l}
$$

and $\tan \alpha_{2}=(L \cdot b-a \cdot l) / L \cdot l$.
Substituting the values of $\tan \alpha_{1}, \tan \alpha_{2}$ and $\tan \alpha_{3}$ in (i) we have

$$
-P_{1}(L-a) / L-P_{2}(L \cdot b-a \cdot l) / L \cdot l+P_{3} \cdot a / L=0
$$

Solving and placing $P=P_{1}+P_{2}+P_{3}$, we have

$$
\begin{equation*}
P / L=\left(P_{1} \cdot l+P_{2} \cdot b\right) / a \cdot l \tag{j}
\end{equation*}
$$

Equation ( j ) is the criterion required.
Maximum Stresses in a Bridge with Inclined Chords.-Let $U_{2} 4^{\prime}$ be a web member in a truss with inclined chords in Fig. 50e. Point $A$ is the intersection of the upper chord $U_{1} U_{2}$ and the lower chord $2^{\prime} 4^{\prime}$. The stress in $U_{2} 4^{\prime}$ equals the moment of the external forces about the point $A$, divided by the arm $c$. The stress in the web member $U_{2} 4^{\prime}$ will then be a maximum when the bending moment at $A$ is a maximum. To draw the moment influence diagram for the point $A$, calculate the bending moments about $A$ for the unit loads at $2^{\prime}$ and $4^{\prime}$. With a load unity at $4^{\prime}$ the moment at $A$ is $(L-a-l) e / L$, and with a load unity at $2^{\prime}$ the moment at $A$ is $(L-a) e / L-(a+e)$, a negative quantity.

Laying off 4-6 and 2-7 equal to these moments, respectively, the influence diagram for bending moment at $A$ is the polygon 1-2-4-5.


Fig. 5oe.
The maximum stress in $U_{2} 4^{\prime}$ occurs when some of the wheels at the hear of the train are in the panel $2^{\prime} 4^{\prime}$, and in unusual cases only, when a ioad is to the left of $2^{\prime}$. Load $P_{2}$ representing the summation of the lcads to the left of $4^{\prime}$ will always come in the panel $2^{\prime} 4^{\prime}$. Load $P_{3}$, representing the summation of the loads to the right of the panel, will always come to the right of the panel $2^{\prime} 4^{\prime}$. Now the moment at $A$ is

$$
\begin{equation*}
M=P_{2} \cdot y_{2}+P_{3} \cdot y_{3} \tag{k}
\end{equation*}
$$

Now move the loads a differential distance to the left, it being assumed that the distribution of the loads is not changed, and

$$
\begin{equation*}
M+d M=P_{2}\left(y_{2}-d y_{2}\right)+P_{3}\left(y_{3}+d y_{3}\right) \tag{1}
\end{equation*}
$$

Subtracting (k) from (1), and solving for a maximum we have

$$
\begin{equation*}
d M=-P_{2} \cdot d y_{2}+P_{3} \cdot d y_{3}=0 \tag{m}
\end{equation*}
$$

Now $d y_{2}=d x \cdot \tan \alpha_{2}$, and $d y_{3}=d x \cdot \tan \alpha_{3}$, and

$$
\begin{equation*}
-P_{2} \cdot \tan \alpha_{2}+P_{3} \cdot \tan \alpha_{3}=0 \tag{n}
\end{equation*}
$$

and if $P=P_{2}+P_{3}$,

$$
\begin{equation*}
P /(5-3)=P_{2} /(3-6) \tag{o}
\end{equation*}
$$

Now $\tan \alpha_{2}=-(l \cdot e / L-a-e) / l$, and $\tan \alpha_{3}=e / L$, and substituting in ( n ) we have

$$
\begin{equation*}
P / L=P_{2}(\mathrm{I}+a / e) / l \tag{p}
\end{equation*}
$$

Now for a uniform load the maximum stress in the member $U_{2} 4^{\prime}$ will occur when the truss is loaded from the right abutment to the point $3^{\prime}$, while the minimum stress will occur when the load extends from the left abutment to the point $3^{\prime}$. The critical point 3 can be calculated by drawing the lines $M-2^{\prime}-3^{\prime}$ and $N-4^{\prime}-3^{\prime}$. For wheel loads no load, should in general, pass $3^{\prime}$ from the right to give a maximum stress in the member.

By substituting $e=\infty$ in (p) we have the criterion for maximum shear in a panel of a bridge with parallel chords.

Resolution of the Shear. -In Fig. 5of the stresses $U, D$ and $L$ hold in equilibrium the external forces on the left of the section cutting these members. These external forces consist of a left reaction, $R$, at


Fig. oof.
the left abutment and a force at 2 , equal to the reaction of the stringer 2-3. The resultant, $S$, of these two forces acts at a point a little to the left of the left reaction. Its position may be determined by moments. Referring to Fig. 5of, let the resultant, $S$, be replaced by the two forces $P_{1}$ and $P_{3}, P_{1}$ acting upwards at I and $P_{3}$ acting downward at 3 as shown. Now taking moments about point I , and

$$
\begin{equation*}
S \cdot a=P_{3} \cdot l \tag{q}
\end{equation*}
$$

Now the bending moment at I equals $M_{1}$, and

$$
\begin{equation*}
P_{3}=S \cdot a / l=M_{1} / l \tag{r}
\end{equation*}
$$

Similarly by taking moments at 3 , we have

$$
S(a+l)=P_{1} \cdot l, \text { but } S(a+l)=M_{3}, \text { and } P_{7}=M_{3} / l
$$

Now

$$
\begin{equation*}
S=P_{1}-P_{3}=M_{1} / l-M_{3} / l \tag{s}
\end{equation*}
$$

where $S$ is the shear in the panel.

## CHAPTER XI.

## Stresses in a Transverse Bent.

Dead and Snow Load Stresses.-The stresses due to the dead load in the trusses of a transverse bent are the same as if the trusses were supported on solid walls. The stresses in the supporting columns are due to the dead load of the roof and the part of the side walls supported by the columns, and are direct compressive stresses if the columns are not fixed at the top. If the columns are fixed at the top the deflection of the truss will cause bending stress in the columns. The dead load produces no stress in the knee braces of a bent of the type shown in Fig. I except that due to deflection of the truss, which may usually be omitted. The stresses may be computed by algebraic or graphic methods.

The stresses due to snow load are found in the same way as the dead load stresses. In localities having a heavy fall of snow the freezing and thawing often cause icicles to form on the eaves of sufficient weight to tear off the cornice, unless particular care has been exercised in the design of this detail.

Wind Load Stresses.-The analysis of the stresses in a bent due to wind loads is similar to the analysis of the stresses in the portal of a bridge. The external wind force is taken (1) as horizontal or (2) as normal to all surfaces. The first is the more common assumption, although the second is more nearly correct. For a comparison of the stresses in a bent due to the wind acting horizontal and normal, see Figs. 54, 55, 56 and 57 , and Table V. In the discussion which immediately follows, the wind force will be assumed to act borizontally.

The magnitude of the wind stresses in the trusses, knee braces and
columns will depend (a) upon whether the bases of the columns are fixed or free to turn, (b) upon whether the columns are rigidly fixed to the truss at the top, and (c) upon the knee brace and truss connections. Of the numerous assumptions that might be made, only two, the most probable, will be considered, viz.: (I) columns pin connected (free to turn) at the base and top, and (II) columns fixed at the base and pin connected at the top.

Columns in mill buildings are usually fixed by means of heavy bases and anchor bolts. Where the columns support heavy loads the dead load stress in the columns will assist somewhat in fixing them. Where the dead load stress plus algebraically the vertical component of the wind stress in the column, multiplied by one-half the width of the base of the column parallel to the direction of the wind, is greater than the bending moment developed at the base of the leeward column when the columns are considered as fixed, the columns will be fixed without anchor bolts (see Chapter XII, Fig. 6I). In any case the resultant moment is all that will be taken by the anchor bolts. The dead load stresses in mill buildings are seldom sufficient to give material assistance in fixing the columns. Unless care is used in anchoring columns it is best to design mill buildings for columns hinged at the base.

The general problem of stresses in a transverse bent for Case 1 and Case II, in which the stresses and forces are determined by algebraic methods, will now be considered. The application of the general problem will be further explained by the graphic solution of a particular problem.

ALGEBRAIC CALCULATION OF STRESSES: Case I. Columns Free to Turn at Base and Top.-In Fig. 5I, $H=H^{1}$ $=\frac{W}{2}=$ horizontal reaction at the base of the column due to external wind force, $W$.
$V=-V^{1}=\frac{W l}{2 s}=$ vertical reaction at base of column due to the wind force, $W$.

The wind produces bending in the columns, and also the direct
stresses $V$ and $V^{1}$. Maximum bending occurs at the foot of the knee brace and is equal to $\left(H-W_{7}\right) d$ on the windward side, and $H^{1} d$ on the leeward side. These bending moments are the same as the bending moments in a simple beam supported at both ends and loaded with a concentrated load at the point of maximum moment. Since the max-
 Fig. 5I.
imum moment occurs at the foot of the knee brace in the leeward column, we will consider only that side. We will assume that the leeward column (b), Fig. 5I, acts as a simple beam with reactions $H^{1}$ and $C$ and a concentrated load $B$, as in (c). The reaction $C$ and load $B$ will now be calculated.

From the fundamental equation of equilibrium, summation horizontal forces equal zero, we have

$$
\begin{equation*}
B=H^{1}+C \tag{25}
\end{equation*}
$$

Taking moments about $b$, we have

$$
\begin{align*}
& C(h-d)=H^{1} d \\
& \quad C=\frac{H^{1} d}{h-d} \tag{26}
\end{align*}
$$

The stresses $K, U$ and $L$ can be computed by means of the following formulas:

$$
\begin{equation*}
K=B \text { cosecant } m \tag{27}
\end{equation*}
$$

where $m=$ angle knee brace makes with column;

$$
\begin{equation*}
U=\left(V^{1}-K \cos m\right) \text { cosecant } n \tag{28}
\end{equation*}
$$

where $n=$ angle of pitch of roof; and

$$
\begin{equation*}
L=C-U \cos n \tag{29}
\end{equation*}
$$

In calculating the corresponding stresses on the windward side, the wind components acting at the points (a), (b) and (c) must be subtracted from $H, B$ and $C$.

The shear in the leeward column is equal to $H^{1}$ below and $C$ above the foot of the knee brace, (d) Fig. 5I.

The moment in the column is shown in (e), Fig. 51, and is a maximum at the foot of the knee brace and is, $M=H^{1} d$.

The maximum fibre stress due to wind moment and direct loading in the columns will occur at the foot of the knee brace in the leeward column, and will be compression on the inside and tension on the outside fibres, and is given by the formula*

$$
\begin{equation*}
f_{2}+f_{1}=\frac{P}{A}+\frac{M y}{I \pm \frac{P h^{2}}{10 E}} \tag{30}
\end{equation*}
$$

where $f_{1}=$ maximum fibre stress due to flexure;
$f_{2}=$ fibre stress due to direct load $P$;
$A=$ area of cross-section of column in square inches;
$M=$ bending moment in inch-pounds $=H^{1} d$;
$y=$ distance from neutral axis to extreme fibre of column in inches;
$I=$ Moment of Inertia of column about an axis at right angles to the direction of the wind;
$P=$ direct compression in the column in pounds;
$h=$ length of the column in inches;
$E=$ the modulus of elasticity of steel $=28,000,000$;
$\frac{P h^{2}}{10 E}$ is minus when $P$ is compression and plus when $P$ is tension.
The maximum compressive wind stress is added to the direct dead and minimum snow load compression and governs the design of the column.

[^5]Having the stresses $K, U$, and $L$, the remaining stresses in the truss can be obtained by ordinary algebraic or graphic methods.

For a simple graphic solution of the stresses in a bent for Case I, in which these stresses are computed graphically, see Fig. 54 for wind horizontal, and Fig. 56 for wind normal to all surfaces.

Case II. Columns Fixed at the Base.-With columns fixed at the base the columns may be (1) hinged at the top, or (2) rigidly fixed to the truss.
(I) Columns fixed at the base and hinged at the top. -It will be further assumed that the deflections at the foot of the knee brace and the top of the column, Fig. 52, are equal.


In Fig. 52 we have as in Case I

$$
H=H^{1}=\frac{U}{2}
$$

$V$ and $V^{1}$ are not as easily found as in Case I, but will be calculated presently.

The leeward column will be considered and will have horizontal external forces acting on it as shown in (c) Fig. 52. For convenience we will consider the leeward column as a beam fixed at $a$ and acted upon by the horizontal forces $B$ and $C$ as shown in (c) Fig. 52, the deflection of the points $b$ and $c$ being equal by hypothesis.

From the fundamental condition of equilibrium, summation horizontal forces equal zero, we have

$$
\begin{equation*}
B=H^{1}+C \tag{3I}
\end{equation*}
$$

To obtain $B$ and $C$ a second equation is necessary.
From the theory of flexure we have for the bending moment in the column at any point $y$, where the origin is taken at the base of the column, when $y \overline{<} d$

$$
\begin{equation*}
M=E I \frac{d^{2} x}{d y^{2}}=B(d-y)-C(h-y) \tag{32}
\end{equation*}
$$

Integrating (32) between the limits $y=o$ and $y=d$, we have

$$
\begin{gather*}
E I \frac{d x}{d y}=\left[B d y-\frac{B y^{2}}{2}-C h y+\frac{C y^{2}}{2}+F\right] \begin{array}{l}
y=d \\
y=0
\end{array} \\
=-C\left(h d-\frac{d^{2}}{2}\right)+\frac{B d^{2}}{2} \tag{33}
\end{gather*}
$$

Now (33) equals $E I$ times the angular change in the direction of the neutral axis of the column from $y=o$ to $y=d$.

When $y \overline{>} d$, we have

$$
\begin{equation*}
M=E I \frac{d^{2} x}{d y^{2}}=-C(h-y) \tag{34}
\end{equation*}
$$

Integrating (34) we have

$$
\begin{equation*}
E I \frac{d x}{d y}=-C h y+\frac{C y^{y}}{2}+F_{2} \tag{35}
\end{equation*}
$$

Now (35) equals $E I$ times the change in direction of the neutral axis of the column at any point from $y=d$ to $y=h$.

To determine the constant $F_{2}$ in (35) we have the condition that the angle at $y=d$ must be the same whether determined from equation (33) or equation (35). Equating (33) and (35) and making $y=d$, we have

$$
\begin{equation*}
F_{2}=\frac{B d^{2}}{2} \tag{36}
\end{equation*}
$$

Substituting this value of $F_{2}$ in (35) we have

$$
\begin{equation*}
E I \frac{d x}{d y}=-C h y+\frac{C y^{2}}{2}+\frac{B d^{2}}{2} \tag{37}
\end{equation*}
$$

Integrating (37) between the limits $y=d$ and $y=h$, we have

$$
\begin{align*}
& E I x=\left[-\frac{C h y^{2}}{2}+\frac{C y^{3}}{6}+\frac{B d^{2} y}{2}\right]_{y=h}^{y=h} \begin{array}{l}
y=d
\end{array} \\
& =C\left(\frac{h d^{2}}{2}-\frac{d^{3}}{6}-\frac{h^{3}}{3}\right)+B\left(\frac{d^{2} h}{2}-\frac{d^{3}}{2}\right) \tag{38}
\end{align*}
$$

Now (38) equals $E I$ times the deflection of the column from $y=d$ to $y=h$, which equals zero by hypothesis.

Solving (38) we have

$$
\begin{align*}
\frac{C}{B} & =\frac{3 d^{2} h-3 d^{3}}{-3 h d^{2}}+d^{3}+2 h^{3} \\
& =\frac{3 d^{2}}{2 h^{2}+2 d h-d^{2}} \tag{39}
\end{align*}
$$

In a beam fixed at one end there is a point of inflection at some point, between $y=o$ and $y=d$, where the bending moment equals zero. Now if $y_{0}$ equals the value of $y$ for the point of inflection, we have from (32)

$$
\begin{align*}
B\left(d-y_{0}\right) & =C\left(h-y_{0}\right) \\
\frac{C}{B} & =\frac{d-y_{0}}{h-y_{0}} \tag{40}
\end{align*}
$$

Equating the second members of equations (39) and (40) and solving for $y_{0}$, we have

$$
\begin{equation*}
y_{0}=\frac{d}{2}\left(\frac{d+2 h}{2 d+h}\right) \tag{41}
\end{equation*}
$$

To find the relations between $y_{0}$ and $d$, we will substitute $h$ in terms of $d$ in (41) and solve for $y_{0}$.

$$
\text { For } \begin{aligned}
d & =\frac{h}{2}, & y_{0}=\frac{5}{8} d \\
d & =\frac{2}{3} h, & y_{0}=\frac{4}{7} d \\
d & =h, & y_{0}=\frac{1}{2} d
\end{aligned}
$$

Solving (3I) and (39) for $C$, we have

$$
\begin{equation*}
C=\frac{H^{1}}{2} \frac{3 d^{2}}{(h-d)(h+2 d)} \tag{42}
\end{equation*}
$$

To find the moment $M_{\mathrm{b}}$ at the base of the leeward column, we have from (32)

$$
M_{\mathrm{b}}=B d-C h
$$

Substituting the value of $B$ given in (31) we have

$$
\begin{equation*}
M_{\mathrm{b}}=H^{1} d+C d-C h \tag{32a}
\end{equation*}
$$

Eliminating $h$ and $d$ by means of (41) and (42) we have finally

$$
\begin{equation*}
M_{\mathrm{t}}=H^{1} y_{0} \tag{43}
\end{equation*}
$$

In like manner it can be shown that the moment at the base of the windward column is

$$
\begin{equation*}
M_{\mathrm{b}_{1}}=H y_{0}-\frac{w d^{2}}{8} \tag{43a}
\end{equation*}
$$

where $w$ equals the wind load per foot of height.
To find $V$ we will take moments about the leeward column. The moments $M_{\mathrm{b}}$ and $M_{\mathrm{b}_{1}}$ at the bases of the columns respectively, resist overturning and we have

$$
\begin{gather*}
V=-V^{1}=\frac{1}{s}\left[\frac{w l^{2}}{2}-M_{\mathrm{b}}-M_{\mathrm{b}_{1}}\right] \\
H=\frac{w l}{2} \\
V=\frac{1}{s}\left[H l-2 H y_{0}+\frac{w d^{2}}{8}\right] \tag{44}
\end{gather*}
$$

Now if $\frac{d}{2}$ is taken equal to $y_{0}$, we have after transposing

$$
\begin{equation*}
V=-V^{1}=\frac{1}{s}\left[2 H-w y_{0}\right]\left[\frac{l-y_{0}}{2}\right] \tag{45}
\end{equation*}
$$

It will be seen that (45) is the same value of $V$ and $V^{1}$ that we would obtain if the bent were hinged at the point of contra-flexure.

From (43) and (45) it will be seen that we can consider the columns as hinged at the point of contra-flexure and solve the problem as in Case I, taking into account the wind above the point of contraflexure only. The maximum shear in the column is shown in (d) Fig. 52.

The maximum positive moment occurs at the foot of the leeward knee brace and is $M_{\mathrm{k}}=H\left(d-y_{0}\right)$; the maximum negative moment occurs at the base of the leeward column and is equal to $M_{\mathrm{b}}=H y_{0}$.

The maximum fibre stress occurs at the foot of the knee brace, and is given by the formula

$$
\begin{equation*}
f_{2}+f_{1}=\frac{P}{A}+\frac{M y}{I \pm \frac{P h^{2}}{10 E}} \tag{30a}
\end{equation*}
$$

The nomenclature being the same as for (30) except $h$, which is the distance in inches from the point of contra-flexure to the top of the column.
(2) Columns fixed at the base and top. - In this case it can be seen by inspection that the point of inflection is at a point $y_{0}=\frac{d}{2}$ and we have for this case

$$
\begin{gather*}
B=H^{1}+C  \tag{3Ia}\\
M_{\mathrm{b}}=\frac{H^{1} d}{2}=M_{\mathrm{k}}  \tag{32a}\\
C=\frac{H^{1} d}{2(h-d)} \tag{42a}
\end{gather*}
$$

It is difficult to realize the exact conditions in either (1) or (2), in Case II, and it is probable that when an attempt is made to fix columns at the base, the actual conditions lie some place between (I) and (2). It would therefore seem reasonable to assume the minimum value, $y_{0}=\frac{d}{2}$ as the best value to use in practice. This assumption is commonly made and will be made in the problems which follow.

Having the external forces $H^{1}, B, C$ and $V^{1}$ the stresses $K, U$ and $L$ are computed by formulas (27), (28) and (29). The remaining stresses in the truss can then be computed by the ordinary algebraic or graphic methods.

For a simple graphic solution of this problem, where the external forces $B$ and $C$ are not computed, see Fig. 55 and Fig. 57.

Maximum Stresses.-It is not probable that the maximum snow and wind loads will ever come on the building at the same time, and it is therefore not necessary to design the structure for the sum of the maximum stresses due to dead load, snow load and wind load. A
common method is to combine the dead load stresses with the snow or the wind load stresses that will produce maximum stresses in the members. It is, however, the practice of the author to consider that a heavy sleet may be on the roof at the time of a heavy wind, and to design the structure for the maximum stresses caused by dead and snow load; dead load, minimum snow load and wind load; or dead load and wind load. It should be noted that the maximum reversals occur when the dead and wind load are acting. For a comparison of the stresses due to the different combinations see Table VI.

A common method of computing the stresses in a truss of the Fink type for small steel frame mill buildings is to use an equivalent uniform vertical dead load; the knee braces and the members affected directly by the knee braces being designed according to the judgment of the engineer. This method is satisfactory and expeditious when used by an experienced man, but like other short cuts is dangerous when used by the inexperienced. For a comparison of the stresses in a 60 -foot Fink truss by the exact and the approximate method above, see Table VI.

Stresses in End Framing.-The external wind force on an end bent will be one-half what it would be on an intermediate transverse bent, and the shear in the columns may be taken as equal to the total external wind force divided by the number of columns in the braced panels. The stresses in the diagonal rods in the end framing, as in Fig. I, will then be equal to the external wind force $H$, divided by the number of braced panels, multiplied by the secant of the angle the diagonal rod makes with a vertical line (For analysis of Portal Bracing see Chapter XII).

Bracing in the Upper Chord and Sides.-The intensity of the wind pressure is taken the same on the ends as on the sides, and the wind loads are applied at the bracing connection points along the end rafters and the corner columns. The shear transferred by each braced panel is equal to the total shear divided by the number of braced panels. The stresses in the diagonals in each braced panel are com-
puted by applying wind loads at the points above referred to, the wind loads being equal to the total wind loads divided by the number of panels. The stresses are computed as in a cantilever truss. The bracing in the plane of the lower chord is designed to prevent undue deflection of the end columns and to brace the lower chords of the trusses. All wind braces should be designed for, say, 5,000 pounds initial stress in each member, and the struts and connections should be proportioned to take the resulting stresses.

It should be noted that a mill building can be braced so as to be rigid without knee braces if the bracing be made sufficiently strong.

GRAPHIC CALCULATION OF STRESSES.-Data.-To illustrate the method of calculating the stresses in a transverse bent by graphic methods, the following data for a transformer building similar to one designed by the author will be taken.

The building will consist of a rigid steel frame covered with corrugated steel and will have the following dimensions: Length of building, $80^{\prime} \mathrm{o}^{\prime \prime}$; width of building, $60^{\prime} \mathrm{o}^{\prime \prime}$; height of columns, $20^{\prime} \mathrm{o}^{\prime \prime}$; pitch of truss, $1 / 4\left(6^{\prime \prime}\right.$ in $\left.12^{\prime \prime}\right)$; total height of building, $35^{\prime} \mathrm{o}^{\prime \prime}$; the trusses will be spaced $16^{\prime} \mathrm{o}^{\prime \prime}$ center to center. The trusses will be riveted Fink trusses. Purlins will be placed at the panel points of the trusses and will be spaced for a normal roof load of 30 lbs . per square foot. The roof covering will consist of No. 20 corrugated steel with $21 / 2$-inch corrugations, laid with 6 -inch end iaps and two corrugations side lap, with anti-condensation lining (see Chapter XVIII). The side covering will consist of an outside covering of No. 22 corrugated steel with $21 / 2$-inch corrugations, laid with 4 -inch end laps and one corrugation side lap; and an inside lining of No. 24 corrugated steel with $I \mathrm{I} / 4$-inch corrugations, laid with 4 -inch end laps and one corrugation side lap. For additional warmth two layers of tar paper will be put inside of the lining. Three 36 -inch Star ventilators placed on the ridge of the roof will be used for ventilation. The general arrangement of the framing and bracing will be as in Fig. I and Fig. 8r.

The approximate weight of the roof per square foot of horizontal projection will be as follows:


The maximum snow load will be taken at 20 pounds, and the minimum snow load at to pounds per square foot of horizontal projection of roof.

The wind load will be taken at 20 pounds per square foot on a vertical projection for the sides and ends of the building, 20 pounds per square foot on a vertical surface when the wind is considered as acting horizontally on the vertical projection of the roof, and 30 pounds per square foot on a vertical surface when the wind is considered as acting normal to the roof.

The stresses in an intermediate transverse bent will be calculated for the following:

Case i. Permanent dead and snow loads.
CASE 2. A horizontal wind load of 20 pounds per square foot on the sides and vertical projections of the roof, with the columns hinged at the base.

Case 3. Same wind load as in Case 2, with columns fixed at the base.

CASE 4. A horizontal wind load of 20 pounds per square foot on the sides, and the normal component of a horizontal wind load of 30 pounds per square foot on the roof, with columns hinged at the basc.

Case 5. Same wind load as in Case 4, with columns fixed at the base.

Case 1. Permanent Dead and Snow Load Stresses.-On account of the limited size of the stress diagram the secondary members have been omitted and the loads applied as shown in Fig. 53. The
loads producing stresses in the truss are laid off to the prescribed scale, $x_{1}-y$ being the left, and $y-x_{8}$ the right reaction. The stresses are calculated as follows: Beginning with the left reaction, $x_{1}-y$, draw lines through $x_{1}$ and $y$, parallel to the upper and lower chords of the truss, respectively, and the line $x_{1}-2$ will represent the compressive stress in the member $x_{1}-2$ and $y-2$ will represent the tensile stress in the member $y-2$ to the scale of the stress diagram.


Fig. 53. Dead and Snow Load Stress Diagram.
Calculate the stresses in the remaining members in like manner, being careful to take the members in order around a joint in completing any polygon. The indeterminate case at the joint $U_{2}$, can be
solved by calculating the stress in 5-6 and substituting it in the diagram, or by substituting an auxiliary member as shown. Compression and tension in the truss and stress diagram in Fig. 53 are indicated by heavy and light lines respectively.

The stress in each column is equal to one-half the sum of the vertical loads, plus the load carried directly by the column.

Case 2. Wind Load Stresses: Wind Horizontal; Columns Hinged.-The wind will be considered as acting at the joints, as shown in Fig. 54. Replace the columns with trusses as indicated by the dotted lines. This makes the bent a two-hinged arch (see Chapter XIV), and the stresses will be statically determinate as soon as the horizontal reactions $H$ and $H^{1}$ at the bases of the columns, have been determined. The usual assumption in mill buildings and portals of bridges is that $H=H^{1}=\frac{W}{2}$ where $W=$ the horizontal component of the external wind force (see Chapter XII). To calculate $V$ and $V^{1}$ graphically, produce the line of resultant wind until it inersects a vertical line through the center of the truss, and connect the intersection $A$ with the bases of the columns $B$ and $C$. From $A$ lay off $H=H^{1}=\frac{W}{2}$, as shown in Fig. 54, and complete the triangles by drawing vertical lines through the ends of these lines. The vertical closing lines will be $V=-V^{1}$, as shown in Fig. 54.

The stresses are calculated as follows: Beginning with the foot of the column $B$, lay off the dotted line $A-B=R$. At $B$, lay off the load $a-B=2240 \mathrm{lbs} . ;$ through $a$ draw a line parallel to auxiliary truss member $a-b$, and through $A$ draw a line parallel to the column $b-A$, completing the polygon $A-B-a-b$.

The line $a-b$ in the stress diagram will be the compression in the auxiliary member $a-b$, and $A-b$ will be the tension in the column $A-b$. It should be noted that $V$ is equal to the algebraic sum of the vertical components of the stresses in $a-b$ and $A-b$. Next lay off $x-a=3200 \mathrm{lbs}$. and complete the polygon $a-x-c-b$ by drawing lines through $x$ and $b$ parallel to the auxiliary truss members $x-c$ and $b-c$ respectively. In like manner determine the stresses at the foot of the knee brace by con-
structing the polygon $A-b-c-1$; and at the top of the column by constructing the polygon $c-x-x-2-1$, etc., until the diagram is checked up at $C$ with $C-A=R^{1}$. The indeterminate case at the joint $U_{2}$, can be solved


Fig. 54. Wind load stress diagram, case 2.
by computing the stress in 5-6 (component due to stress in 6-7), and substituting it in the diagram, or by substituting an auxiliary member.

The stresses in the auxiliary members are represented by dotted lines and are of no value in designing the bent. It should be noted that the auxiliary members do nọt affect the stresses in the trusses and knee braces, which are correctly given in the stress diagram.

The maximum stress in the knee brace $A-15$ is compression, and occurs on the leeward side.

The maximum shear in the leeward column below the knee brace is $H^{1}=5600 \mathrm{lbs}$. ; the maximum shear above the knee brace is $13,100 \mathrm{lbs}$. The maximum moment occurs at the foot of the knee brace and is $H^{1} \times 14 \times 12=940,800$ inch-lbs.

Case 3. Wind Load Stresses: Wind Horizontal; Columns Fixed at Base.-This is Case 2 with the base of the column hinged at the point of contra-flexure. In calculating $H$ and $V$, Fig. 55, the wind


Fig. 55. Wind load stress diagram, case 3 .
above the point of contra-flexure only (see formula (45)) produces stresses in the bent. The value of fixing the columns at the base is seen by comparing the stresses in Case 2 with those in Case 3, both being drawn to the same scale. Maximum shear in the leeward column below the knee brace is $H^{1}=4480 \mathrm{lbs}$.; above the knee brace is 5230 lbs. The maximum positive moment occurs at the foot of the knee brace and negative moment at the foot of the column, and is $H^{1} \times 7$ $\times 12=376,320$ inch-lbs.

Case 4. Wind Load Stresses: Wind Normal ; Columns Hinged. -In Fig. 56 the resultant of the external wind forces on the sides and the roof acts through tineir intersection, and is parallel to $C B$ in the stress diagram (line $C B$ is not drawn). To calculate $V$ and $V^{1}$ connect the point of intersection, $A$, of the resultant wind and the vertical line through the center of truss, with the bases of the columns $B$ and $C$.


CASE 4
Wind Load Stress Diagram
Wind Normal, Roof 18 lbs . Sides 20 lbs .sqift


Fig. 56. Wind load stress diagram, case 4 .

From $A$ lay off one-half of resultant wind on each side, and from the extreme ends drop vertical lines $V$ and $V^{1}$ to the dotted lines $A B$ and $A C$. The vertical lines $V$ and $V^{1}$ will be the vertical reactions, the horizontal lines will be $H$ and $H^{1}$, and $R$ and $R^{1}$ will be the resultants of the horizontal and verticai reactions at $B$ and $C$ respectively. The stresses are calculated by beginning at the base of the column $B$ as in Case 2. In the polygon $a-B-A-b$ at $B, A-B=R, a-B=2240 \mathrm{lbs}$. , and $a-b$ and $A-b$ are the stresses in $a-b$ and $A-b$ respectively.

$\operatorname{sen} 2634=44724$
Wind Load Stress Diagram Wind Normal, Roof 18 lbs Sides 20 lbs -sq.fto


Fig. 57. Wind load stress diagram, case 5.

The maximum shear in the leeward column below the knee brace is $H^{1}=5500 \mathrm{lbs}$., above the knee brace is $12,800 \mathrm{lbs}$.; the maximum moment occurs at the foot of the knee brace and is $H^{1} \times 14 \times 12=$ 924,000 inch-lbs.

Case 5. Wind Load Stresses: Wind Normal; Columns Fixed at Base.-This is Case 4 with the base of the column moved up to the point of contra-flexure. The maximum shear in the leeward column below the knee brace is 4300 lbs. , above the knee brace is 5000 lbs .; the maximum positive moment occurs at the foot of the knee brace and negative moment at the foot of the column and is $H^{1} \times 7 \times 12=361,200$ inch-lbs. For analysis see Fig. 57.

Maximum Stresses.-The stresses in the different members of the bent for the different cases are given in Table V. The maximum

TABLE V.

| $\begin{aligned} & \text { Name } \\ & \text { Pifece } \end{aligned}$ | Stresses in a Bent For |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dead Load | Snow Load | Wind Load |  |  |  |
|  |  |  | Case2 | Case3 | Case 4 | C |
| x-2 | +9300 | +18900 | +3700 | +2900 | +15400 | +14 |
|  | +8800 | +17600 | +4900 | +4000 | +15400 | +14900 |
|  | +8200 | +16400 | + 400 | +1400 | +10200 |  |
|  | +7700 | +15400 | +1400 | +3400 | +10200 | +11200 |
| $\times$ | +7700 | +15400 | -6100 | -1900 | -1400 | +2800 |
| $\times$ | +9300 | +18600 | -19800 | -8600 | -14600 | - 3600 |
| - | -8300 | -16600 | + 5700 | +2800 | - 5100 | -8000 |
| 2-3 | +1100 | + 22 | + 500 | + 500 | +2400 |  |
|  | -1200 | -2400 | -6800 | -4900 | -8500 | -6700 |
| 5 | +2200 | +4400 | +3800 | +3000 | +7300 | +660 |
| $5-6$ | -1200 | -2400 | - 600 | - 600 +500 | -2600 |  |
| 5-8 | +1100 -2400 | +2200 -4800 | +500 -4300 | +500 -3300 | +2400 | +2400 -7400 |
| 5-8 | -2400 | -4800 -7200 | -4300 | -3300 | -8280 | -7400 |
|  | -3600 | - 72200 | +7500 | +3600 | +7400 | +3500 |
|  | $\begin{array}{r}+2200 \\ -1200 \\ \hline\end{array}$ | +4400 -2400 | -6700 | -3200 +7400 | -6700 +14800 | - 3200 +7000 |
| Y-4 | -7100 | -14200 | +2400 | + 800 +800 | -6000 | -7700 |
| Y-8 | -4700 -7100 | -7400 -14200 | +6800 +14200 | +4000 +7700 | +2200 +9700 |  |
| 13-15 | -8300 | -16600 | +4600 | $+3000$ |  |  |
|  |  |  |  | -6200 | -8500 |  |
|  |  |  | - 32200 | -2100 | +3400 | +4500 |
|  |  | +9600 | +1700 | +1300 | +8000 | + 7600 |
| A-17 | +4800 | +9600 | +3200 | +2100 | +5300 |  |
| 15-16 | +4800 | +9600 | -8600 | -3800 | -6400 | -2400 |

stresses in the different members of the bent for (I) dead load plus maximum snow load; (2) dead load plis wind load, Case 4; (3) dead load plus minimum snow load plus wind load, Case 4 ; and (4) a vertical dead load of 40 lbs . per sq. ft. horizontal projection of the roof are given in Table VI. The stresses which control the design of the members may be seen in Table VI. By comparing these values with the stresses given in the last column the accuracy of the equivalent load method can be seen.

TABLE VI.

| Maximum Stresses in a Bent For |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Name } \\ & \text { of } \\ & \text { Piece } \end{aligned}$ | $\begin{aligned} & \text { Dead Load } \\ & \text { TMax.Snow } \\ & \text { Load } \end{aligned}$ | Dead Load + Wind Load Case 4 | Dead Load+Min. Snow Load+Wind Load. Case 4 | Vert.Dead Load of 401 bs .per Sq FTol Ft.of Hor. Proj. |
| x-2 | +28200 | +24700 | +34300 | +37200 |
| $x-3$ | +26400 | +24200 | +33000 | + 35200 |
| x-6 | +26400 | +18400 | +26600 | +32800 |
| X-7 | +23100 | +17900 | + 25600 | +30800 |
| x-9 | +23100 | +6300 | +14000 | +30800 |
| $x-13$ | +28200 | - 5300 | + 4000 | + 37200 |
| 1-2 | -24900 | -13400 | -21700 | -33200 |
| 2-3 | + 3300 | +3500 | $+4600$ | +4400 |
| 3-4 | - 3600 | -9700 | -10900 | - 4800 |
| 4-5 | + 6600 | +9500 | +11700 | +8800 |
| 5-6 | - 3600 | - 3800 | - 5000 | -4800 |
| 6-7 | + 3300 | +3500 | +4600 | +4400 |
| 5-8 | - 7200 | -10600 | -13000 | -9600 |
| 7-8 | -10800 | -14400 | -18000 | -14400 |
| 8-9 | -10800 | + 3800 | + 200 | -14400 |
| 9-12 | +6600 | -4500 | -2300 | +8800 |
| 12-13 | - 3600 | +13600 | +12400 | -4800 |
| Y-4 | -21300 | -13100 | -20200 | -28400 |
| Y-8 | -14100 | - 2500 | - 5200 | -14800 |
| Y-12 | -23100 | + 2600 | - 4500 | -28400 |
| 13-15 | -24900 | - 7800 | -16100 | -32400 |
| A-1 |  | -8500 | -8500 |  |
| A-15 |  | +21500 | -21500 |  |
| A-b | +14400 | + 8200 | +13000 | +19200 |
| C-1 | +14400 | +12800 | +17600 | +19200 |
| A-17 | +14400 | +10100 | +14900 | +19200 |
| 15-16 | +14400 | - 1600 | + 3200 | +19200 |

Graphic Calculation of Reactions.-The graphic method for calculating the reactions given in Fig. 56 and Fig. 57 may be proved as follows: In Fig. 57a the intersection of $\Sigma W$ and the center line of the bent is at $A$. Draw $A-B$ and $A-C$, lay off $\Sigma W$ so that it is bisected by the point $A$, and draw $\mathrm{I}-2$ and $3-4$. Then $\mathrm{I}-2$ equals $V^{\prime}$ and 3-4 equals $V$ as shown in the following proof:

Proof.-To calculate $V$ take moments of external forces about $C$, and

$$
\begin{aligned}
V & =\frac{\Sigma W \times b}{L} \\
& =\frac{4 \text { times area triangle } A-4-C}{L}
\end{aligned}
$$

But area triangle $A-4-C$ is also equal to $\frac{3-4 \times L}{4}$ and

$$
V=\frac{3-4 \times L}{L}=3-4
$$

which proves the construction. It may be proved in like manner that $\mathrm{I}-2=V^{\prime}$.


Fig. 57a.
TRANSVERSE BENT WITH VENTILATOR.-The calculation of the wind stresses in a transverse bent with a monitor ventilator is shown in Fig. 57b. The bents are spaced $32^{\prime} 0^{\prime \prime}$ centers and
are designed for a horizontal wind load of 20 lbs . per sq. ft., the normal wind roof load being obtained by Hutton's formula as shown in Fig. 6.

The point of contra-flexure is found by substituting in formula (41) to be at a point $y_{0}=17.0^{\prime}$. The external forces are calculated for the bent above the point of contra-flexure by multiplying the area supported at the point by the intensity of the wind pressure. For example, the load at $B$ is $32^{\prime} \times 6.75^{\prime} \times 20 \mathrm{lbs} .=4320 \mathrm{lbs}$.


Fig. 57b.
The line of application and the amount of the external wind load, $\Sigma W$, is found by means of a force and an equilibrium polygon. $\Sigma W$ acts through the intersection of the strings parallel to the rays $O-B$
and $O-C$, and is equal to $C-B$ (line $C-B$ is not drawn in force polygon) in amount. The reactions $R$ and $R^{\prime}$ are calculated by the graphic method as previously described.

The calculation of stresses is begun at point $B$ in the windward column, and in the stress diagram the stresses at $B$ are found by drawing the force polygon $a-B-A-b-a$. The remaining stresses are calculated as for a simple truss. In calculating the stresses in the ventilator it was assumed that diagonals 9-10 and 10-12 are tension members, so that $9-10$ will not be in action when the wind is acting as shown. Before solving the stresses at the joint $6-7-9$ it was necessary to calculate the stresses in members $i-11$, 10-11, and $9-h$. The remainder of the solution offers no difficulty to one familiar with the principles of graphic statics.

The stress in post $b-a$ is equal to $V$, while the stress in $\mathrm{I}-c$ is found by extending $\mathrm{I}-c$ to $c^{\prime}$ in the stress diagram, $c^{\prime}$ being a point on the load line. The stress in post $n-A$ is equal to $V^{\prime}$, while the stress in $19-m$ is found by extending $19-m$ to $m^{\prime}$ in the stress diagram, $m^{\prime}$ being a point on the horizontal line drawn through $C$. The kind of stress in the different members is shown by the weight of lines in the bent diagram and by arrows in the stress diagram, one arrow indicating the direction and kind of stress the first time a stress is used and two arrows indicating the second time a stress is used.

TRANSVERSE BENT WITH SIDE SHEDS.-Transverse bents with side sheds are quite often used in the design of shops and mills. The calculation of the stresses due to wind load in a bent of this type is an interesting application of the author's graphic solution of stresses in transverse bents.

It is required to calculate the stresses due to a horizontal wind load of 30 lbs . per square foot on the sides and the normal component of 30 lbs . (Hutton's Formula, Fig. 6) on the roof, the bents being spaced $20^{\prime} 0^{\prime \prime}$ centers, as in Fig. 57c. The loads are calculated, and by means of a force polygon in (d) and an equilibrium polygon in (a) the resultant wind $\Sigma W$ is found to pass through point $E$, and to be equal to $30,800 \mathrm{lbs}$.

Calculation of Reactions.-The horizontal shear of $25,400 \mathrm{lbs}$. will be taken by the columns in proportion to their rigidities, in this
case the rigidities of the columns are assumed equal and the shear at the foot of each column will be 6350 lbs . The vertical reactions will be due to two forces: (1) a vertical load of $17,200 \mathrm{lbs}$., which will be taken equally by the four columns, making a load of 4300 lbs . on each ; and (2) to a bending moment of $25,400 \mathrm{lbs} . \times 9.2 \mathrm{ft} .=233,68 \mathrm{ft} .-1 \mathrm{bs}$. (the bending moment about C. G. is also equal to $30,800 \mathrm{lbs} \times 7.6 \mathrm{ft}$.), which will be resisted by the columns and will cause reactions varying as the distance from the center of gravity of the columns, (E), as in the case of the continuous portal, Fig. 63.

Let $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$, and $v_{4}^{\prime}$ represent the reactions due to moment in the columns, respectively; then if $a$ is the reaction on a column at a units distance from the center of gravity we will have $v_{1}^{\prime}=-a 40$, $v_{2}^{\prime}=-a 20, v_{3}^{\prime}=+a 20$, and $v_{4}^{\prime}=+a 40$. The resisting moment of each column will be equal to the reaction multiplied by the distance from the center of gravity, and $a 40^{2}+a 20^{2}+a 20^{2}+a 40^{2}=233,-$ 680 ft . lbs . from which $a=58.42 \mathrm{lbs}$. and $v_{1}^{\prime}=-2340 \mathrm{lbs}$; $v^{\prime}{ }_{2}=-$ $1170 \mathrm{lbs} ; v_{3}^{\prime}=+1170 \mathrm{lbs} ; v_{4}^{\prime}=+2340 \mathrm{lbs}$.

Now adding the reactions due to (1) and (2) we have

$$
\begin{aligned}
& V_{1}=4300-2340=+1960 \mathrm{lbs} ., \\
& V_{2}=4300-1170=+3130 \mathrm{lbs} ., \\
& V_{3}=4300+1170=+547 \mathrm{lbs} ., \\
& V_{4}=4300+2340=+6640 \mathrm{lbs} .
\end{aligned}
$$

Combining the horizontal and vertical reactions we have $R_{1}=a_{1}-A=$ 6600 lbs.; $R_{2}=A-B=7200$ lbs.; $R_{3}=B-C=8400 \mathrm{lbs} . ; R_{4}=$ $C-D=9100 \mathrm{lbs}$. These reactions close the force polygon in (d).

Calculation of Stresses.-Auxiliary members are substituted as shown by the broken lines. It will be seen that these members are arranged so that all bending is removed from the columns and that the stresses in the truss members are correctly given in the stress diagram. The calculation is started at point $A$ at the foot of the lefthand column as in the case of the simple transverse bent, and reactions $R_{2}$ and $R_{3}$ are substituted as the calculation progresses, the stress diagram finally closing at the base of the leeward column, point $D$. The stresses are given on the members in (a). The direct stresses in the columns are easily found by algebraic resolution beginning at the

foot of the columns where the direct stress is equal to $V_{1}, V_{2}, V_{3}$ and $V_{4}$, respectively. The stresses in the leeward side of the main truss are very large due to the small depth of truss in line of the member 29-30. The stresses could be materially reduced and a considerable saving of material obtained by using a main truss of type (b) or (h), Fig. 88.

Moment and Shear in Columns.-The bending moment in the main leeward column is shown in (b), the maximum moment is at the foot of the knee brace and is $M_{1}=274,500 \mathrm{ft}$.-lbs. The shear diagram is shown in (c), the maximum shear is between the foot of the knee brace and the top of the column and is $S_{0}=45,750 \mathrm{lbs}$.

Note.-The stresses in a bent with side sheds obtained by the preceding method are approximate for the reason that the assumed conditions are probably never entirely realized. In the exact calculation of the stresses, of which the above solution is the first approximation, the deformation of the framework is considered in a manner similar to that of the two-hinged arch in Chapter XIV. The approximate solution is entirely adequate for all practical purposes.

## CHAPTER XII.

## Stresses in Portals.

Introduction.-Portal bracing is frequently used for bracing the sides of mill buildings and open sheds. There are many forms of portal bracing in use, a few of the most common of which are shown in Fig. 58.


Fig. 58.
Portal bracing may be in separate panels or may be continuous. The columns may be hinged or fixed at the base in either case.

CASE I. STRESSES IN SIMPLE PORTALS: Columns Hinged.-The deflections of the columns in the portals shown in Fig. 58 are assumed to be equal and

$$
H=H^{1}=\frac{R}{2}
$$

Taking moments about the foot of the windward column

$$
V^{1}=-V=\frac{R h}{s}
$$

Having found the external forces, the stresses in the members may be found by either algebraic or graphic methods.

Algebraic Solution-Portal (a).-To obtain the stress in member $G C$, (a) Fig. 58, pass a section cutting $G F, E F$ and $G C$, and take moments of the external forces to the right of the section about point $F$ as a center.

$$
\begin{equation*}
G C=-\frac{H h}{(h-d) \sin \theta} \tag{46}
\end{equation*}
$$

But $H=\frac{R}{2}$, and $(h-d) \sin \theta=\frac{s}{2} \cos \theta$. Substituting these values in (46) we have

$$
\begin{equation*}
G C=-\frac{R i}{s \cos \theta}=-V \sec \theta \tag{47}
\end{equation*}
$$

Resolving at $C$ and $F$ we have, stress in $E F=0$, and also stresses $E E^{\prime}$ and $H E^{\prime}=0$.

To obtain stress in $G D$, pass section cutting $H G, H E^{\prime}$ and $G D$, and take moments of the external forces to the left of the section about point $H$ as a center.

$$
\begin{equation*}
G D=\frac{H h}{(h-d) \sin \theta}=+V \sec \theta \tag{48}
\end{equation*}
$$

To obtain stress in $G F$, pass a section cutting $G F, E F$ and $G C$, and take moments of the external forces to the right of the section about point $C$ as a center.

$$
\begin{equation*}
G F=+\frac{R(h-d)+H a}{h-d} \tag{49}
\end{equation*}
$$

To obtain stress in $H G$, pass a section cutting $H G, H E^{\prime}$ and $G D$, and take moments of the external forces to the left of the section about the point $D$ as a center.

$$
\begin{equation*}
H G=-\frac{H d}{h-d} \tag{50}
\end{equation*}
$$

The stress in the windward post, $A F$, is zero above and $V$ below the foot of the knee brace $C$; the stress in the leeward post is zero above and $V^{1}$ below the foot of the knee brace $D$.

The shear in the posts is $H$ below the foot of the knee brace, and above the foot of the knee brace is given by the formula

$$
\begin{equation*}
S=\frac{H d}{h-d}=\text { stress in } H G \tag{51}
\end{equation*}
$$

The maximum moment in the posts occurs at the foot of the knee braces $C$ and $D$ and is

$$
\begin{equation*}
M=H d \tag{52}
\end{equation*}
$$

For the actual stresses, moments and shears in a portal of this type, see Fig. 59.

Portal (b). -The stresses in portal (b) Fig. 58, are found in the same manner as in portal (a). The graphic solution of a similar portal with one more panel is given in Fig. 60, which see. It should be noted that all members are stressed in portals (b) and (d).

Portal (c).-The stresses in portal (c) Fig. 58, may be obtained (I) by separating the portal into two separate portals with simple bracing, the stresses found by calculating the separate simple portals with a load $=1 / 2 R$ being combined algebraically, to give the stresses in the portal; or (2) by assuming that the stresses are all taken by the system of bracing in which the diagonal ties are in tension. The latter method is the one usually employed and is the simpler.

Maximum moment, shear, and stresses in the columns are given by the same formulas as in (a) Fig. 58.

Portal (e).-In portal (e) Fig. 58, the flanges $G F$ and $D C$ are assumed to take all the bending moment, and the lattice web bracing
is assumed to take all the shear. The maximum compression in the upper flange $G F$ occurs at $F$, and is

$$
\begin{equation*}
G F=+\frac{R(h-d)+H d}{h-d} \tag{53}
\end{equation*}
$$

The maximum tension in the upper flange $G F$ is

$$
\begin{equation*}
G F=-\frac{H d}{h-d} \tag{54}
\end{equation*}
$$

The maximum stress in the lower flange $D C$ is

$$
\begin{equation*}
D C= \pm \frac{H h}{h-d} \tag{55}
\end{equation*}
$$

maximum tension occurring at $C$, and maximum compression occurring at $D$.

The maximum shear in the portal strut is $V$, which is assumed as taken equally by the lattice members cut by a section, as $a a$.

Maximum moment, shear, and stresses in the columns are given by the same formulas as in (a) Fig. 58.

Portal ( $f$ ). -The maximum moment in the portal strut $I F$ in (f) Fig. 58, occurs at $H$ and $G$, and is

$$
\begin{equation*}
M=+H h-V a \tag{56}
\end{equation*}
$$

The maximum direct stress in $H G$ is $+H$, and in $I H$ is

$$
\begin{equation*}
I H=-\frac{H d}{h-d} \tag{57}
\end{equation*}
$$

The maximum stress in $G F$ is given by formula (49).
The maximum shear in girder $I F$ is equal to $V$. The stress in $G C$ is $-H h \div(h-d) \sin \theta=-$ stress $H D$.

Portal strut $I F$ is designed as a girder to take the maximum moment, shear and direct stress.

Maximum moment, shear, and stresses in the columns are given by the same formulas as in (a) Fig. 58.

Graphic Solution.-To make the solution of the stresses statically determinate, replace the columns in the portal with trussed framework
as in Fig. 59. The stresses in the interior members are not affected by the change and will be correctly given by graphic resolution.


Fig. 59.
As before $H=H^{1}=\frac{R}{2}$ and $V=-V^{1}=\frac{R h}{s}$
Having the calculated $H, H^{1}, V$, and $V^{1}$, the stresses are calculated by graphic resolution as follows: Beginning at the base of the column $A$, lay off $A-4=V=3000 \mathrm{lbs}$. acting downward, and $A-a=H=1000$ lbs. acting to the right. Then $a-\mathrm{I}$ and $4-\mathrm{I}$ are the stresses in members $a-\mathrm{I}$ and $4-\mathrm{I}$, respectively, heavy lines indicating compression and light lines tension. At joint in auxiliary truss to right of $C$ the stress in I- $a$ is known and stresses in 1-2 and 2-a are found by closing the polygon.

The stresses in the remaining members are found in like manner, taking joints $C, E, F$, etc. in order, and finally checking up at the base of the column $B$. The full lines in the stress diagram represent stresses in the portal; the dotted lines represent stresses in the auxiliary members or stresses in members due to auxiliary members, and are of no consequence. The shears and moments are shown in the diagram.


Fig. 60.

Simple Portal as a Three-Hinged Arch.-In a simple portal the resultant reactions and the external load $R$ meet in a point at the middle of the top strut, and the portal then becomes a three-hinged arch
(see Chapter XIII), provided there is a joint at that point (point $b$, Fig. 60).

In Fig. 60 the reactions were calculated graphically and the stresses in the portal were calculated by graphic resolution. Full lines in the stress diagram represent required stresses in the members. Stresses 3-2 and II-12 were determined by dropping verticals from points 3 and II to the load line 4 -Io.

CASE II. STRESSES IN SIMPLE PORTALS: Columns Fixed.-The calculation of the stresses in a portal with columns fixed at the base is similar to the calculation of stresses in a transverse bent with columns fixed at the base. The point of contra-flexure is at the point

$$
\begin{equation*}
y_{\circ}=\frac{d}{2}\left(\frac{d+2 h}{2 d+h}\right) \tag{41}
\end{equation*}
$$

measured up from the hase of the column. The point of contra-flexure is usually taken at a point a distance $\frac{d}{2}$ above the bases of the columns.

The stresses in a portal with columns fixed may be calculated by considering the columns hinged at the point of contra-flexure and solving as in Case 1.

Algebraic Solution.-In Fig. 6I we have

$$
H=H^{2}=\frac{R}{2}
$$

$$
\text { and } \quad V=-V^{1}=\frac{R\left(h-\frac{d}{2}\right)}{s}
$$

Having found the reactions $H$ and $H^{1}, V$ and $V^{1}$, the stresses in the members are found by taking moments as in (a) Fig. 58, considering the columns as hinged at the point of contra-flexure.

The shear diagram for the columns is as shown in (a) and the moment diagram as in (c) Fig. 61.

Anchorage of Columns.-In order that the columns be fixed, the anchorage of each column must be capable of developing a resisting moment greater than the overturning moment $M=-\frac{H d}{2}$, shown in
(c) Fig. 6I. The anchorage required on the windward side is a maximum and may be calculated as follows: Let $T$ be the tension in the windward anchor bolt, $2 a$ be the distance center to center of anchor


Fig. 6i.
bolts, and $P$ be the direct load on the column. Taking moments about the leeward anchor bolt we have

$$
\begin{gather*}
2 T a-(P-V) a+\frac{H d}{2}=0 \\
T=-\frac{H d}{4 a}+\frac{P-V}{2} \tag{58}
\end{gather*}
$$

If the nuts on the anchor bolts are not screwed down tight, there will be a tendency for the column to rotate about the leeward edge of the base plate, and both anchor bolts will resist overturning.

The maximum pressure on the masonry will occur under the leeward edge of the base plate and will be

$$
S=\frac{W}{A}+\frac{M c}{T}
$$

where $W=$ direct stress in post;
$A=$ area of base of column in sq. ins.;
$M=$ bending moment $=1 / 2 \mathrm{Hd}$;
$c=$ one-half the length of the base plate;
$I=$ moment of inertia of the base plate about an axis at right angles to the direction of the wind.
Graphic Solution.-The stresses in the portal in Fig. 62 have been calculated by graphic resolution. This problem is solved in the same manner as the simple portal with hinged columns in Fig. 59.

CASE 2
Columns Fixed
Stress Diagram
Compression
Tension

Fig. 62.
STRESSES IN CONTINUOUS PORTALS. -The portal with five bays shown in Fig. 63 will be considered. The columns will all be assumed alike and the deformation of the framework will be neglected. The shears in the columns at the base will be equal, and will
be

$$
H=\frac{R}{6}
$$

To find the vertical reactions proceed as follows: Determine the center of gravity of the columns by taking moments about the base of one of the columns. Now there will be tension in each one of the columns on the windward side and compression in each one of the columns on the leeward side of the center of gravity of the columns. The sum of the moments of the reactions must be equal to the moment


Fig. 63.
of the external wind load, $R$. The reactions at the bases of the columns will vary as the distance from the center of gravity and their moments will vary as the square of the distance from the center of gravity. Now, if $a$ equals the reaction of a column at a units distance from the center of gravity, we will have $V_{1}=-a d_{1}, V_{2}=-a d_{2}, V_{3}==-a d_{3}$, $V_{4}=+a d_{4}, V_{5}=+a d_{5}$, and $V_{6}=+a d_{6}$ and the moment

$$
\begin{gather*}
M=a\left(d_{1}{ }^{2}+d_{2}{ }^{2}+d_{3}{ }^{2}+d_{4}{ }^{2}+d_{5}{ }^{2}+d_{6}{ }^{2}\right)=R h \\
a \Sigma d^{2}=R h \\
a=\frac{R h}{\Sigma d^{2}} \tag{59}
\end{gather*}
$$

Having found $a$, the vertical reactions may be found.
Now having found the external forces $H$ and $V$, the stresses can be calculated by either algebraic or graphic methods.

Stresses in a Double Portal.-To illustrate the general problem the stresses in a double portal are calculated by graphic resolution in Fig. 64. In this case

$$
H=H=H=\frac{R}{3}=1000 \mathrm{lbs} .
$$

and

$$
V=-V^{1}=\frac{R h}{2 s}=2250 \mathrm{lbs}
$$

The vertical reaction of the middle column is zero. By substituting the dotted members as shown, the stresses can be calculated as in the case of the simple portal. The full lines represent stresses in the portal members. The shear in the columns is equal and is $H$ below, and $\frac{H d}{h-d}$ above the foot of the knee brace.


Fig. 64.
The maximum bending moment occurs at the foot of the knee brace and is

$$
M=H d=192,000 \text { inch-lbs. }
$$

## CHAPTER XIII.

## Stresses in Three-hinged Arch.

Introduction.-An arch is a structure in which the reactions are inclined for vertical loads. Arches are divided, according to the number of hinges, into three-hinged arches, two-hinged arches, one-hinged arches, and arches without hinges or continuous arches. Three-hinged arches are in common use for exposition buildings, train sheds and other similar structures. Two-hinged arches are rarely used in this country; continuous arches are used only in dome construction.

A three-hinged arch is made up of two simple beams or trusses. Trussed three-hinged arches, only, will be considered in this chapter, and trussed two-hinged arches in the next.

CALCULATION OF STRESSES.-The reactions for a threehinged arch can be calculated by means of simple statics with slightly more work than that necessary to obtain the reactions in simple trusses. Having determined the reactions the stresses may be calculated by the ordinary algebraic and graphic methods used in the solution of the stresses in simple roof trusses.

Calculation of Reactions: Algebraic Method.--Let $H$ and $V$, $H^{1}$ and $V^{1}$ be the horizontal and vertical reactions at the left and right supports for a concentrated load $P$, placed at a distance $x$ from the center hinge $C$ in the three-hinged arch in Fig. 65.

From the three fundamental equations of equilibrium

$$
\begin{equation*}
\Sigma \text { horizontal components of forces }=0 \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\Sigma \text { vertical components of forces }=0 \tag{b}
\end{equation*}
$$

$\mathbf{\Sigma}$ moments of forces about any point $=0$


Fig. 65.
we have

$$
\begin{aligned}
& H=H^{1} \\
& V+V^{1}=P
\end{aligned}
$$

and
Taking moments about $B$, we have

$$
\begin{equation*}
V s-P\left(\frac{s}{2}+x\right)=0 \tag{60}
\end{equation*}
$$

and taking moments about center hinge $C$, we have

$$
\begin{equation*}
V \frac{s}{2}-H h-P x=0 \tag{61}
\end{equation*}
$$

Solving (60) we have

$$
\begin{equation*}
V=\frac{P}{s}\left(\frac{s}{2}+x\right) \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{1}=P-V=\frac{P}{s}\left(\frac{s}{2}-x\right) \tag{63}
\end{equation*}
$$

Substituting (6I) in (62), we have

$$
\begin{equation*}
H=H^{1}=\frac{P}{2 h}\left(\frac{s}{2}-x\right) \tag{64}
\end{equation*}
$$

The horizontal reactions at the crown are the same as at the supports. Reactions for an inclined load may be found by substituting the proper moment arms.

Calculation of Reactions: Graphic Method.-Let P, Fig. 66, be the resultant of all the loads on the left segment. Since there is no
bending moment at hinge $C$, the line of action of the reaction $R_{2}$ must pass through the hinge at the crown. This determines the direction of reaction $R_{2}$, and since the three external forces $R_{1}, R_{2}$ and $P$ produce equilibrium in the structure they must meet in a point. Therefore to find the direction of $R_{1}$ produce $B C$ to $d$ and join $d$ and $A$.


Fig. 66.
The values of $R_{1}$ and $R_{2}$ may then be obtained from the force polygon.

The reactions due to loads on the right segment may be found in the same manner. The two operations may be combined in one as illustrated in the solution of the dead load stresses in a three-hinged arch, Fig. 67.

Calculation of Dead Load Stresses.-To find the reactions for the dead loads in Fig. 67, the loads are laid off on the load line of the force polygon in order, beginning at the left reaction $A$, and two equilibrium polygons, one for each segment, are drawn using the same force polygon. The vertical reactions at the crown, $P_{\mathrm{c}}$, and at abutments, $P_{\mathrm{H}}$ and $P_{\mathrm{B}}$, are found by drawing a line through pole $o$ of the force polygon parallel to the closing lines of the equilibrium polygons. The load $P_{0}$ at the crown causes reactions $R_{1}{ }^{1}$ and $R_{2}{ }^{1}$, and combining
reactions $R_{1}{ }^{1}$ and $P_{\mathrm{B}}$ at $A$, and $R_{2}{ }^{1}$ and $P_{\mathrm{B}}$ at $B$, we have the true reactions $R_{1}$ and $R_{2}$.


Fig. 67.
Having obtained the reactions, the stresses in the members are found in the same manner as in simple trusses. In Fig. 67 the stresses in the left segment are calculated by graphic resolution. The diagram
is begun with the left reaction $x-y=R_{1}$. Where the dead load is symmetrical a stress diagram need only be drawn for one segment.


Fig. 68.

Calculation of Wind Load Stresses.-The reactions for wind load in Fig. 68 are found as follows:

The reactions $P_{\mathrm{a}}$ and $P_{\mathrm{c}}$ for the windward segment, considering it a simple truss supported at the hinges, are found by means of force


Fig. 69.
and equilibrium polygons. The lines of action of $P_{\mathrm{a}}$ and $P_{\mathrm{c}}$ are parallel to each other and to the resultant $R$. The line of action of the right reaction, $R_{2}$, must pass through the center hinge $C$, and the reaction $P_{\mathrm{c}}$ will be replaced by two reactions $R_{2}$ and $R_{1}{ }^{1}$ parallel to $R_{2}{ }^{1}$ and $R_{1}{ }^{1}$ in the arch respectively, and the force triangle will be closed by drawing $R_{1}$ in the force polygon. The intersection of force $R$ and reactions $R_{1}$ and $R_{2}$ falls outside the limit of the diagram.

Having obtained the reactions, the stresses in the members are calculated in the same manner as in a simple truss.

The wind load stresses must be calculated in both the windward and leeward segments. The wind load stress diagram for the windward segment is shown in Fig. 68, and for the leeward segment in Fig. 69 , compression being indicated in the stress diagrams by heavy lines and tension by light lines. Both wind load stress diagrams and the dead load stress diagram are usually constructed for the same segment of the arch. By comparing wind load stress diagrams in Fig. 68 and Fig. 69, it will be seen that there are many reversals in stress. The maximum stresses found by combining the dead, snow and wind load stresses as in the case of simple trusses and transverse bents, are used in designing the members.

## CHAPTER XIV.

## Stresses in Two-hinged Arch.

Introduction.-A two-hinged arch is a frame-work or beam with hinged ends which has inclined reactions for vertical loads. The bottom chords of two-hinged arches are usually cambered, however, a simple truss becomes a two-hinged arch if the ends are fixed to the abutments so that deformation in the direction of the length of the truss is prevented.

The horizontal components of the reactions may be supplied either by the abutments or by a tie connecting the hinges. In the latter case the deformation of the tie must be considered in determining the horizontal reactions. Two-hinged arches are statically indeterminate structures and their design is subject to the same uncertainties as continuous and swing bridges.

Two-hinged roof arches are rigid and economical, but have been used to a very limited extent on account of the difficulties experienced in their design. The methods outlined in this chapter are quite simple in principle, although they necessarily require quite extended calculations. Two-hinged roof arches with open framework, only, will be considered in this chaptcr.

CALCULATION OF STRESSES.-The vertical reactions in a two-hinged arch are the same as in a simple truss or a three-hinged arch having the same loads and span. The horizontal reactions, however, depend upon the deformation of the framework and cannot be determined by simple statics alone. Before the deformations can be calculated, the sizes of the members must be known, and conversely, before the sizes
of the members can be calculated, the stresses which depend upon the deformations must be known. Any method for the calculation of the stresses in a two-hinged arch is, therefore, necessarily a method of successive approximations. With a skilled computer, however, it is rarely necessary to make more than two or three trials before obtaining satisfactory results in designing roof arches. Two-hinged bridge arches require somewhat more work to design than roof arches on account of the greater number of conditions for maximum stresses in the members.

Having determined the correct value of the horizontal thrust, $H$, the stresses in a two-hinged arch may be calculated by the ordinary algebraic or graphic methods used in the solution of the stresses in simple trusses.

Calculation of the Reactions.-In Fig. 70 the vertical reactions, $V_{1}$ and $V_{2}$, are the same as for a simple truss. The horizontal reactions, $H$, will be equal and will be the forces which would prevent change in length of span if the ends of the arch were free to move. The horizontal thrust, $H$, will therefore be the force which, applied at the roller end of a simple truss, will prevent deformation and make the truss a twohinged arch.

An expression for $H$ may be determined as follows: In Fig. 70 assume that all members are rigid except the member $1-y$, which is increased in length $\delta$, under the action of the external load, $W$. The


Fig. 70.
movement of the truss $\Delta^{\prime}$ at the hinge $L_{i}^{\prime}$ owill then be due to the change in length, $\delta$, oi the member $1-y$.

Let $h^{1}$ be the horizontal reaction necessary to bring $L^{1}{ }_{0}$ back to its original position, and let $U h^{1}$ be the stress in the member I- $y$ due to the horizontal thrust $h^{1}$. Now the internal work, $1 / 2 \delta h^{1} U$, in shortening the member $1-y$ to its original length will be equal to the external work, $1 / 2 h^{1} \Delta^{\prime}$, required to bring the hinge $L_{0}{ }^{1}$ back to its original position,
and

$$
1 / 2 h^{1} \Delta^{\prime}=1 / 2 \delta h^{1} U
$$

but $\delta=\frac{P L}{E}$, where $P$ is the unit stress in the member $I-y$ due to the external load $W, L$ is the length of the member $\mathrm{I}-\mathrm{y}$, and $E$ is the modulus of elasticity of the material of which the member is composed. Substituting this value of $\delta$ in (65) we have

$$
\begin{equation*}
\Delta^{\prime}=\frac{P U L}{E} \tag{66}
\end{equation*}
$$

where $U$ is the stress in I-y due to a load $\frac{h^{1}}{h^{2}}=$ unity at $L^{1}{ }_{0}$
Now if each one of the remaining members of the arch is assumed to be distorted in turn, the others meanwhile remaining rigid, the distortion in each case at $L_{0}{ }_{0}$ will be represented by the general equation (66) and the total deformation, $\Delta$, at $L{ }_{1}{ }_{0}$ will be

$$
\begin{equation*}
\Delta=\Sigma \frac{P U L}{E} \tag{67}
\end{equation*}
$$

Let $P^{1} h^{1}$ be the unit stress in the member I- $y$ due to a horizontal thrust $h^{1}$, then by the same reasoning
but

$$
\begin{align*}
& \Delta^{\prime}=\delta U  \tag{65a}\\
& \delta=\frac{P^{1} h^{1} L}{E} \\
& \Delta^{\prime}=\frac{h^{1} P^{1} U L}{E}
\end{align*}
$$

and
and the total deformation, $\Delta$, will be

$$
\begin{equation*}
\Delta=\Sigma \frac{h^{1} P^{1} U L}{E}=H \Sigma \frac{P^{1} U L}{E} \tag{68}
\end{equation*}
$$

Now for equilibrium, the values of $\Delta$ as given in equations (67) and (68) must be equal, and we have, after solving for $H$

$$
\begin{equation*}
H=\frac{\Sigma \frac{P U L}{E}}{\Sigma \frac{P^{1} U L}{E}} \tag{69}
\end{equation*}
$$

which is an expression for computing the horizontal thrust in any twohinged arch due to external loads. This formula holds for any system of loading as long as $P$ is the unit stress due to that loading, $U$ is the stress in the member and $P^{1}$ is the unit stress in the member due to a unit load acting at the point at which the deformation is desired, and parallel to the direction in which the deformation is to be measured.

The method of finding the correct value of the horizontal reaction, $H$, is as follows: (I) calculate the stresses in the arch for the given loading on the assumption that it is a simple truss with one end supported on frictionless rollers; (2) calculate the stresses in the arch for an assumed horizontal reaction, $H^{1}=$, say, 20000 lbs . on the assumption that it is a simple truss on frictionless rollers; (3) calculate the deformation, $\Delta$, of the free end of the truss for the given loads by means of formula ( 67 ) ; (4) calculate the deformation, $\Delta^{\prime}$ of the free end of the truss for the assumed horizontal reaction $H^{1}=20000 \mathrm{lbs}$. by means of formula (68). The true value of $H$ is then by formula (69) given by the proportion

$$
\begin{gather*}
H: H^{1}:: \Delta: \Delta^{\prime} \\
H=\frac{H^{1} \Delta}{\Delta^{\prime}}=\frac{20000 \Delta}{\Delta^{\prime}} \tag{70}
\end{gather*}
$$

The calculation of the horizontal reaction, $H$, and the stresses can be made by algebraic methods alone or by a combination of graphic and algebraic methods. The first requires less work, while the second
is probably easier to understand. The algebraic solution will be given first.

Algebraic Calculation of Reactions.-In Table VIl the values of the unit stress, $P$, in each member due to the external loads are given in column 5 ; values of $\frac{P L}{E}$ are given in column 6; values of the stress, $U$, in each member due to a unit horizontal thrust are given in column 8 ; and values of $\frac{P U L}{E}$ are given in column 9. The algebraic sum of the quantities in column 9 gives the total deformation, $\Delta=.956$ inches at the point where the unit horizontal thrust was applied measured parallel to the line of action of the thrust.

TABLE VII.
Simple Truss with Vertical Loads

| $\begin{gathered} \mathrm{I} \\ \text { Member } \end{gathered}$ | Area Sq.in. | Length, L inches | $\begin{gathered} 4 \\ \hline \text { Stress } \\ \text { lbs. } \end{gathered}$ | UnitStress P lbs. | $\frac{P}{E}$ | No.of Mem | $U$ | $\frac{P U L}{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-X | 5.3 | 252 | +6000 | + 11320 | +. 095 | 9 | -0.90 | 86 |
| 2 | 5.3 | 192 | +41000 | + 7740 | +.050 | 6 |  |  |
|  | 5.3 <br> 5.3 | 180 | +67000 | +12650 | +. 076 | 12 | -1.45 | -. 110 |
|  | 5 | 252 | +6000 | +1132 | +. | 15 |  |  |
| 1-Y | 5.3 | 216 | -25000 | 4720 | -. 034 | 8 | +1.60 | . 05 |
| 3-Y | $5 \cdot 3$ | 192 | -57000 | -10760 | -. 069 | 4 |  |  |
| 3 | $5 \cdot 3$ | 192 | -57000 | -10760 | -. 069 | 10 | +2.05 | 141 |
| 1-Y | 5.3 | 216 | -25000 | - 4720 | -. 034 | 14 | +1.60 | -. 05 |
|  | 2.0 | 150 | -30000 | -15000 | -. 075 | 7 | +0.75 | -. |
| 2-3 | 4.0 | 204 | +32000 | + 8000 | +. 054 | 5 | -0.45 | -. 022 |
|  | 4.0 | 150 | - 22000 | - 5500 | -. 028 | 2 | +0.80 |  |
|  | 4.0 | 150 | -22000 | 5500 | -. 028 | 3 | +0.80 | -. 022 |
|  | 4.0 | 204 | +3 | 800 |  | 11 |  | -. 024 |
| Total Deformation $=\Sigma \frac{P U L}{E}=.956$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

In Table VIII similar values are given for the arch as a truss with an assumed horizontal reaction of $H^{1}=20000 \mathrm{lhs}$. The algebraic sum of the quantities in column 9 gives the total deformation, $\Delta^{\prime}=$ .574 inches at the point where the horizontal thrust was applied.

TABLE VIII.
Simple Truss with $\mathrm{H}=20000$ Ibs.

| Member | Area Sq.in | Length,L inches | Stress lbs. | UnitStress P'lbs. | $\frac{P^{6} L}{E}$ | No.of Mem | U | $\frac{P^{\prime \prime}{ }^{\prime}}{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-X | 5.3 | 252 | -18000 | -3400 | -.028 | 9 | -0.90 | 5 |
| -x | 5.3 | 192 | -16000 | - 3000 | -. 019 | 6 | -0.80 | . 015 |
|  | 5.3 | 180 | -29000 | - 5500 | -. 033 | 1 | -1.45 | . 048 |
| 2-x | 5.3 5 | 152 | -18000 | - 3000 | -. 019 | 12 | -0.80 | 015 |
| 1-Y | 5.3 | 216 | +32000 | - 6400 | - | 15 | -0.90 +1.60 | . 025 |
| 3-Y | 5.3 | 192 | \$41000 | +7800 | +. 050 | 4 | +2.05 | . 102 |
| 3-Y | 5.3 | 192 | +41000 | + 7800 | + 0.50 | 10 | +2.05 | . 102 |
|  | 5.3 | 216 | +32000 | + 6000 | + t 043 | 14 | +1.60 | . 069 |
| 1 | 2.0 | 150 | +15000 | + 7500 | +.038 | 7 | +0.75 | . 029 |
| 2-3 | 40 | 204 | -9000 | - 2250 | -. 015 | 5 | -0.45 | . 007 |
|  | 40 | 150 | +16000 | +4000 | t. 022 | 2 | +0.80 | . 016 |
|  | 4.0 | 150 | +16000 | +4000 | + 020 | 3 | +0.80 | . 016 |
| ? ${ }^{2}$ | 4.0 2.0 | 204 150 | -9000 | -2250 +7500 |  | 11 |  | .007 .029 |
|  |  |  | To | Deform | natio |  | $\frac{P U L}{E}$ | 574 |

TABLE IX.
Simple Truss with Dead and Wind Loads

| Member | Area Sa.in | Length, inches | Stress lbs. | UnitStress Plbs. | $\frac{{ }^{6}}{\frac{P L}{E}}$ | No.of Mem. | $u$ | $\frac{P^{9}}{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.3 | 25 | +87000 | +16400 | 7.138 | 9 | 0 | -. 124 |
|  | 5.3 | 192 | +72000 | +13600 | +.087 | 6 | -0.80 | - 069 |
| 4 | 5.3 | 180 | +95000 | +17800 | $\stackrel{+107}{+.1063}$ |  | -1.45 |  |
|  | 5.3 5.3 |  | 752000 | +9800 +13600 | ${ }^{7}+114$ | 12 | -0.80 | -. 050 |
| - | 53 | 216 | -58000 | -1090 | - | 8 |  |  |
|  | 5.3 | 192 | -87000 | -16400 | -. 105 | 4 | +2.05 | . 215 |
| $3^{\prime}-Y$ | 5.3 | 192 | -74000 | -14000 | -. 090 | 10 | +2.05 | . 185 |
|  | 5.3 | 216 | -30000 | - 5650 | -. 041 | 14 | +1.60 | . 64 |
| 1-2 | 2.0 | 150 | -36000 | -18000 | -.090 | 7 | +0.75 | -. 067 |
| 2 | 40 | 204 | +28000 | + 7000 | +.048 | 5 | -0.45 | . 022 |
|  | 4.0 | 150 | -22000 | - 5500 | -.028 |  | +0.80 | - 02 |
|  | 4. | 150 | -42000 | -10500 | -053 | 3 | +0.80 |  |
| $\mathrm{I}^{\prime}$ | 4.0 | 1204 | +46000 |  |  |  |  |  |
| Total Deformation $=\sum \frac{P U L}{E}=1.357$ |  |  |  |  |  |  |  |  |

The correct value of $H$ is given by the proportion

$$
\begin{gathered}
H: H^{1}:: \Delta: \Delta^{\prime} \\
H=\frac{20000 \times .956}{.574}=33400 \mathrm{lbs}
\end{gathered}
$$

In Table IX the deformation, $\Delta$, for the same arch considered as a simple truss and acted upon by dead and wind loads is 1.357 inches, and

$$
H=\frac{20000 \times 1.357}{.574}=47300 \mathrm{lbs}
$$

Graphic Calculation of Reactions.-In the graphic solution of the horizontal reactions the total amount of the deformations, $\Delta$ and $\Delta$ are found by means of deformation diagrams. Before constructing the deformation diagrams the quantities in the first seven columns in Tables VII and VIII or VIII and IX must be


Fig. 71.
calculated. The stresses given in column 4 are calculated as shown in Fig. 71. Column 6, giving deformations of each member, and column 7 , giving the order in which these deformations are used, are, however, the only values used in constructing the deformation diagrams.

Deformation Diagram.-The principle upon which the construction of the deformation diagram is based is as follows: Take the two members $a-c$ and $c-b$ in (d) Fig. 72, meeting at the point $c$. Assume that $a-c$ is shortened and $b-c$ is lengthened the amounts indicated. It is required to find the new position, $c^{\prime}$, of the point $c$. With center at $a$ and a radius equal to the new length of $a-c=a-c^{\prime}$, describe an arc. The new position of $c$ must be some place on this arc. Then with a center at $b$ and a radius equal to the new.length of $b-c=b-c^{\prime}$, describe an arc cutting the first arc in $c^{\prime}$. The new position of $c$ must be some place on this arc and will therefore be at the intersection of the two arcs, $c^{\prime}$. Since the deformations of the members are always very small as compared with the lengths of the members, the arcs may be replaced by perpendiculars, and the members themselves need not be drawn, (e) Fig. 72.

To draw the deformation diagram, (b) Fig. 72, for the arch as a truss with one end on frictionless rollers and loaded with vertical loads, proceed as follows: Begin with the member marked I, lay off its deformation $=+.076$ inches (Table VII., column 6) to scale and parallel to member I. Now lay off the deformation of $2=-.028$ inches away, from the joint $U_{2}$ and parallel to the member 2, and lay off deformation of $3=-.028$ inches, away from the joint $U^{\prime}{ }_{2}$ and parallel to the member 3. Perpendiculars erected at the ends of deformations 2 and 3 will meet in the new position of $L_{2}$. The vertical distance between the deformation I and point $L_{2}$ represents to scale the change in position of $L_{2}$ relative to the member $U_{2} U^{1}{ }_{2}$. At $L_{2}$ in the deformation diagram lay off deformation of $4=-.069$ inches, away from the joint and parallel to the member 4, and at $U_{2}$ lay off deformation of $5=+.054$ inches, toward the joint and parallel to the member 5. The perpendiculars erected at the ends of the deformations 4 and 5


Fig. 72.
determine the new position of joint $L_{1}$ relative to the other points. In like manner perpendiculars erected at the ends of deformations 6 and 7 determine $U_{1}$, and finally perpendiculars erected at the ends of deformations 8 and 9 determine $L_{0}$. The deformation diagram for the right half of the truss is constructed in the same manner. The horizontal line joining $L_{0}$ and $L_{{ }^{1}}{ }_{0}$ represents to scale the movement of the joint $L_{1}{ }_{0}$.

In drawing the deformation diagram it is immaterial whether plus deformations are laid of toward the joints and minus deformations away from the joints as was done in the preceding problem, or the reverse. The former method is more common, but the latter is probably more consistent. The deformation diagram (b) if drawn in the latter way would be turned upside down and inside out.

Calculation of Dead Load Stresses in Arch.-In Fig. 71, (b) is the stress diagram for the arch as a simple truss with vertical loads as shown in (a); and (d) is the stress diagram for the arch as a simple
truss with a horizontal thrust, $H^{1}$, of 20000 lbs . as shown in (c). The quantities for calculating the deformations of the simple truss with vertical loads are given in Table VII, and the deformation diagram is shown in (b) Fig. 72. The quantities for calculating the deformations of the simple truss with a horizontal thrust of 20000 lbs . are given in Table VIII, and the deformation diagram is shown in (c) Fig. 72. The true value of $H$ is found by the proportion

$$
\begin{aligned}
& H: 20000:: .956: .574 \\
& H=33400 \mathrm{lbs} .
\end{aligned}
$$

The stress diagram for the two-hinged arch with $V=V^{\prime}=42000$ lbs., and $H=H=33400 \mathrm{lbs}$. is shown in (b) Fig. 73.

The difference in the stresses in the members of a simple truss and a two-hinged arch may be seen by comparing stress diagram (b) Fig. 71, and stress diagram (b) Fig. 73, both diagrams being drawn


Fig. 73.
to the same scale. The stresses in the arch may be found from the stresses given in Tables VII and VIII by adding the stresses in column 4, Table VII, to the corresponding stresses in column 4, Table VIII, multiplied by 1.67, the ratio between the actual and as-
sumed horizontal reactions. For example, the stress in 1-x in the arch equals $+60000-18000 \times 1.67=+29800 \mathrm{lbs}$. Stress in $\mathrm{I}-y$ equals $-25000+32000 \times 1.67=+28440 \mathrm{lbs}$.

Dead and Wind Load Stresses in Arch.-In Fig. 74, (b) is the stress diagram for the arch as a simple truss loaded with dead and wind loads as shown in (a). Table IX gives the same data for this case as


Fig. 74.
are given in Table VII for the simple truss with vertical loads. The deformation diagram for the deformations given in column 6, Table IX, is shown in (b) Fig. 75. In drawing the deformation diagram for this case the member marked I was assumed to be fixed in position and the other members were assumed free to move. The horizontal distance between $L_{0}$ and $L_{\prime}^{\prime}$, will be the total deformation required.


Fig. 75.

The deformation diagram for the simple truss with a horizontal thrust, $H^{1}$, of 20000 lbs . is given in (c) Fig. 75 and is the same as that given in (c) Fig. 72.

The true value of $H$ is found by the proportion

$$
\begin{aligned}
& H: 20000:: \mathrm{I} .357: .574 \\
& H=47300 \mathrm{lbs} .
\end{aligned}
$$

The stress diagram for the two-hinged arch with dead and wind loads and a horizontal thrust, $H$, of 47300 lbs . is given in (b) Fig. 76 . The stresses in the arch for this case may be found from the stresses in Tables IX and VIII by adding the stresses in column 4, Table IX, to the corresponding stresses in column 4, Table VIII, multiplied by 2.865 , the ratio between the actual and assumed horizontal reactions.


Fig. 76.
As a check on the accuracy of the calculations the movement at $L_{0^{\circ}}$ in the arch was calculated in Table X and was found to be zero as it should be.

Arch With Horizontal Tie.-If a horizontal tie is used the final deformation of the arch will be equal to the deformation of the tie.

> TABLE X.

Two Hinged Arch with Dead and Wind Loads

| Member | $\begin{gathered} 2 \\ \text { Area } \\ \text { Sa.in. } \end{gathered}$ | Length,L inches | Stress lbs. | $\begin{array}{\|c\|} \hline 5 \\ \hline \text { Unit Stress } \\ \text { P lbs. } \\ \hline \end{array}$ | $s \frac{\sigma^{6}}{E}$ | $u$ | $\frac{P G}{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.3 | 252 | +43 | + 8220 | +. 069 | -0.90 | 63 |
|  | 5.3 | 192 | +34200 | +6450 | +.041 | - 0.80 | -. 033 |
| 4 | 5.3 | 180 | +26500 | +5000 | +. 030 | -1.45 | -. 045 |
| 2-x | 5.3 | 192 | +14200 | +2660 | +. 017 | -0.80 | -. 014 |
| 1-x | $5 \cdot 3$ | 252 | +29500 | +5550 | +. 047 | -0.90 | -. 042 |
| I-Y | 5.3 | 216 | +18000 | +3400 | +. 0224 | +1.60 | +. 038 |
| 3-Y | 5.3 | 192 | +10000 | +1890 | +. 012 | +2.05 | +. 025 |
|  | 5.3 | 192 | +23000 | +4350 | +.028 | +2.05 | +. 057 |
| 1-2 | 5.3 | 216 | +46000 | +8700 | +.062 | +1.60 | +. 099 |
| $1-2$ | 2.0 | 150 | -500 +6500 | - 250 | -. 001 | +0.75 | -. 001 |
|  | 4.0 | 204 | + 6500 | +1625 | +. 011 | -0.45 | -. 005 |
|  | 4.0 | 150 | +15800 -4200 | +3950 | +. 020 | +0.80 | 16 |
|  |  | 150 | -4200 | -1050 +5700 | -. 005 |  |  |
| 2 | 2.0 | 150 | - 5000 | -2500 |  |  | . 010 |
|  |  | al | eform | ation |  |  | 0 |

Assume that the joints $L_{0}$ and $L_{0}{ }^{\prime}$ in (a) Fig. 73 are connected by a tie having 3 sq. in. cross-section. A force of 1000 lbs . will stretch the tie

$$
\Delta^{\prime}=\frac{1000 \times 720^{\prime \prime}}{3 \times 29,000,000}=.0083 \text { inches } .
$$

The movement for 1000 lbs . applied as $H$ is equal to $\frac{.574}{20}=.0287$ inches. The value of $H$ therefore which will produce equilibrium for the arch with vertical loads will be

$$
\begin{aligned}
& +.0083 H+.0287 H=.956 \times 1000 \mathrm{lbs} . \\
& H=\frac{.956 \times 1000}{.0370}=25840 \mathrm{lbs}
\end{aligned}
$$

The stresses in the arch for this case may be found from the stresses in Table VII and Table VIII as previously described.

Temperature Stresses.-Where a horizontal tie is used and all parts of the structure are exposed to the same conditions and range of temperature, the entire arch will contract and expand freely and temperature stresses will not enter into the calculations. Where the tie is protected and where rigid abutments are used the temperature stresses must receive careful attention.

The deformation $\Delta^{\prime}$ due to a uniform change of temperature of $t$ degrees Fahr. when the arch is assumed to be a truss supported on frictionless rollers, will be $e t L$, where $e$ is the coefficient of expansion of steel per degree Fahr. $=.00000665 ; t$ equals change in temperature in degrees Fahr.; and $L$ equals the length of the span.

For a change of 75 degrees Fahr. from the mean, the deformation will be

$$
\begin{align*}
\Delta^{\prime} & = \pm .00000665 \times 75 L \\
& = \pm \frac{L}{2000} \tag{71}
\end{align*}
$$

For the arch in Fig. 73

$$
\Delta^{\prime}= \pm \frac{720^{\prime \prime}}{2000}= \pm .36 \text { inches }
$$

This will be equivalent to a change in $H$ of $\pm \frac{.36}{.574} \times 20000= \pm$ 12540 lbs . The stresses due to temperature in the two-hinged arch will be equal to the stresses in column 4, Table VIII, multiplied by $\pm$ .627. The maximum stresses due to external loads and temperature will be found by adding algebraically the temperature stresses to the stresses due to the external loads. If the arch is not erected at a mean temperature this fact must be taken into account in setting the pedestals.

Design of Two-Hinged Arch.-In designing a two-hinged roof arch proceed as follows: (I) With one end free to move, calculate the stresses in the arch as a simple truss ; (2) with an assumed horizontal reaction, $H^{1}$, of, say, 20000 lbs ., calculate the stresses in the arch as a simple truss; (3) calculate the stresses in the arch for some assumed value of $H$, this value of $H$ may be guessed at or often may be estimated with considerable accuracy;* (4) design the members for approximate stresses in the arch; (5) calculate the deformation of the arch as a truss for the approximate sections and stresses; (6) calculate the deformation of the arch as a truss for an assumed horizontal reaction of 20000 lbs.; (7) determine a more accurate value of $H$ from the deformations as previously described; (8) recalculate the stresses in the arch, redesign the members, recalculate the deformations, recalculate a new value of $H$, etc., until satisfactory sections are obtained. The second approximation is usually sufficient. Corrections for horizontal tie and temperature should be applied in making the approximations. The gross area of the sections of all members should be used in determining the deformation of the members. If riveted tension members are much weakened, a somewhat smaller value of $E$, say, $26,000,000$, may be used than the $29,000,000$ commonly used for the compression members.

The method just described is much more expeditious than the usual method of designing the members for the stresses found by con-

[^6]sidering the arch a simple truss with allowable stresses, say, twice those to be finally allowed. In the latter case the first approximation is usually worthless on account of the reversal of stresses in the members which have been designed as tension members. If the value of $H$ in the first method is taken large enough to make members in compression that the designer's judgment or experience says should be in compression, the second approximation is usually final.

Note.-As a first approximation assume that all members have a unit area and that $E$ is a constant. Then

$$
\begin{equation*}
H=\frac{\Sigma S \cdot U \cdot L}{\Sigma U^{2} \cdot L} \tag{70a}
\end{equation*}
$$

where $S=$ total stress in each member due to external loads;
$U=$ stress in each member due to a load of 1 lb . acting in line with the horizontal reaction $H$.
For the two-hinged arch carrying dead loads from Table VIII and Table IX, the approximate value of $H$ as found by substituting in (70a) is, $H=33,000 \mathrm{lbs}$., which checks the true value very closely.

## CHAPTER XV.

## Combined and Eccentric Stresses.

## Combined Direct and Cross Bending Stresses. -Thus

 far members of trusses and frameworks have been considered as acted on by direct forces, parallel to the axis of the member. While this is the more common case, it often becomes necessary to design members which support loads as in (a), (b), (c), or (d), Fig. 77, or in which the line of action of the external force does not coincide with the neutral axis of the member, (e), (f), (g), or (h), Fig. 77.
(a)

(C)

(b)

(d)

(g)

(h)

Fig. 77.

The following nomenclature will be used:
Let $P=$ total direct loading on member in pounds;
$l=$ length of member in inches;
$L=$ length of member in feet;
$I=$ moment of inertia of member;
$y_{1}=$ distance from neutral axis to remote fibre on side for which stress is desired;
$E=$ modulus of elasticity of the material;
$e=$ eccentricity of $P$, i.e. distance from line of action of $P$ to neutral axis of member in inches;
$v=$ deflection of member in inches;
$A=$ area of member in square inches;
$f_{1}=$ fibre stress due to cross bending;
$f_{2}=\frac{P}{A}=$ direct fibre stress;
$M=$ total bending moment;
$M_{2}=$ bending moment due to deflection, $=P v$;
$M_{1}=$ bending moment due to external forces and is equal to $1 / 4 W l$ in (a) and (b) ; $1 / 8 w l^{2}$ in (c) and (d) ; and $P e$ in (e), (f), (g) and (h) Fig. 77.

Now

$$
\begin{gather*}
M=M_{2} \pm M_{1}=P v \pm M_{1}=\frac{f_{1} I}{y_{1}}  \tag{72}\\
v=\frac{f_{1} l^{2}}{c E y_{1}}
\end{gather*}
$$

But
in which $c$ is a constant depending upon the condition of the ends, and the manner in which the beam is loaded.

Substituting this value of $v$ in (72) we have

$$
\frac{P f_{1} l^{2}}{c E y_{3}} \pm M_{1}=\frac{f_{1} l}{y_{1}}
$$

and reducing, the stress due to cross bending is

$$
\begin{equation*}
f_{1}=\frac{M_{1} y_{1}}{I \pm \frac{P l^{2}}{C E}} \tag{73}
\end{equation*}
$$

where the minus sign is to be used when $P$ is compression and the plus sign is to be used when $P$ is tension.

The factor $c$ may be taken equal to 10 for columns, beams and bars with hinged ends as in Fig. 77 ; equal to 24 where ore end is hinged and the other end is fixed; and equal to 32 where both ends are fixed.

The total stress in the member due to direct stress and cross bending will therefore be for columns with hinged ends

$$
\begin{equation*}
f_{1}+f_{2}=\frac{M_{1} y_{1}}{I \pm \frac{P l^{2}}{10 E}}+\frac{P}{A} \tag{74}
\end{equation*}
$$

Formula (74) is general, and applies to all forms of sections and all forms of loading. The second term in the denominator is minus when $P$ is compression, and plus when $P$ is tension.

In finding the stress due to weight of member and direct loading, the value for $f_{1}$ given by formula (73) must be multiplied by the sine of the angle that the member makes with a vertical line.

Combined Compression and Cross Bending.-The method of calculating direct and cross bending stresses will be illustrated by calculating the stresses in the end post of a bridge due to direct compression, weight, eccentricity of loading, and wind moment.

The end post is composed of two ro-inch channels weighing $1_{5}$ lbs. per foot with a $14^{\prime \prime} \times 1 / 4^{\prime \prime}$ plate riveted on the upper side and laced on the lower side with single lacing. The pins are placed in the center of the channels giving an eccentricity of $e=1.44$ inches. The compressive stress $P$ produces a uniform compression on all fibres of the section ;weight of the member causes tension on the lower and compression on the upper fibres; eccentricity of the load $P$ causes compression on lower and tension on upper fibres ; and wind moment causes com-


To locate neutral axis A-A take momer 's about lower edge of channels

$$
Y_{0}=\frac{8.92 \times 5+3.5 \times 10.125}{12.42}=6.44^{\prime \prime}
$$

Eccentricity, $e=6.44-5.00=1.44^{\prime \prime}$

Moment of Inertia, $I_{A}$, about A-A
Let $I_{B}=I$ of $E$ about axis $1-1=133.8$
Ipl. = I of Pl.about axis 2-2 = .02
$A_{E}=$ Area of $[5=8.92 \mathrm{sq} \cdot \mathrm{in}$.
Apl=Area of $\mathrm{Pl}=3.50 \mathrm{sq} \cdot \mathrm{in}$.
Then $I_{A}=I_{\bar{E}}+A_{\mathbb{E}} \mathrm{e}^{2}+I_{\text {pl }}+A_{p l} d^{2}$
$=133.8+8.92 \times(1.44)^{2}+.02+3.5(3.685)^{2}$
$=199.8$
Radius of gyration, $r_{A}=\sqrt{\frac{199.8^{\circ}}{12.42}}=4.0^{\prime \prime}$

Moment of Inertia, Is, about B-B Let $I_{\bar{\Sigma}}=I$ of ${ }^{5}$ about axis $3-3=4.6$

Ipl. = I of Pl.aboutaxisB-B $=57.17$
$A_{E}=$ Area of $E=8.92 \mathrm{sq} \cdot \mathrm{in}$.
Apl.=Area of Pl. $=3.50$ sq in.
Then $I_{B}=I_{E}+A_{E}(4.25+.64)^{2}+I_{p l}$.
$=4.6+8.92(4.89)^{2}+57.17$
$=275.0$
Radius of gyration, $r_{B}=\sqrt{\frac{275.0}{12.42}}=4.7^{\prime \prime}$

Stress Due To Weight Of Member
The total weight of the member is as follows:-
2-10"E @15\#-30'-0' long $=900$. lbs.
$1-14^{\prime \prime} \times \frac{1}{4}^{\circ} \mathrm{PI}$ @ $11 \cdot 9^{\#} 30^{\circ}-0^{\circ} \quad=357 \mathrm{n}$
Details and Lacing-26\% $=328 "$
Total weight, $W_{1}=1585$ "
Bending Moment due to weight of the member, $M=\frac{1}{8} W I \sin \theta$
Stress due to weight, $f_{w}=\frac{M Y_{1}}{I-\frac{T_{1}^{2}}{10 E}}=\frac{\frac{1}{8} W I \sin \theta_{\theta} Y_{1}}{I-\frac{P I^{2}}{1 O E}}$
Stress due to welght in upper fibre

$$
f_{w}=\frac{\frac{1}{8} \times 1585 \times 358 \times .633 \times 3.81}{199.8-\frac{95300 \times 358^{2}}{10 \times 28000000}}=+1100 \text { lbs. (compression) }
$$

Stress due to weight in lower fibre

$$
f_{w}^{\prime}=\frac{6.44}{3.81} \times 1100=-1860 \mathrm{lbs} \cdot(\text { tension })
$$

## Stress Due To Eccentric Loading

The stress in the extreme fibre due to eccentric loading will be

$$
f e=\frac{M Y_{1}}{I-\frac{P 1^{2}}{10 E}}=\frac{P e Y_{i}}{I-\frac{\left.P\right|^{2}}{10 E}}
$$

Eccentric stress in upper fibre

$$
\mathrm{fe}_{\mathrm{e}}=\frac{95300 \times 1.44 \times 3.81}{199.8-\frac{95300 \times 358^{2}}{10 \times 28000000}}=-3347 \mathrm{lbs} .(\text { tension })
$$

Eccentric stress in lower fibre

$$
f_{e}^{\prime}=\frac{6.44}{3.81} \times 3347=+5657 \mathrm{lbs} .(\text { compression })
$$

The resultant stress due to eccentric loading and weight will be

$$
\begin{aligned}
f_{1} & =f e+f w \\
& =-3347+1100=-2247 \mathrm{lbs} \text { in upper fibre. } \\
& =+5657-1860=+3797 \mathrm{lbs} . \text { in lower fibre. }
\end{aligned}
$$

The maximum stress in the member due to direct loading, weight of member and eccentric loading will occur in the lower fibre and will be

$$
\begin{aligned}
f_{2}+f_{1} & =\frac{P}{A}+f e+f_{w} \\
& =\frac{95300}{12.42}+3797=+11470 \mathrm{lbs}
\end{aligned}
$$

To determine the position of the pin so that stress due to weight will neutralize stress due to eccentric loading make
$\mathrm{Pe}^{\prime}=\frac{1}{8} \mathrm{~W}$ sine , where $\mathrm{e}^{\prime}$ is the distance of the pin Delow the neutral axis.

Substituting and solving, $95300 \times e^{\prime}=\frac{1}{8}(1585 \times 358 \times .633)$

$$
e^{\prime}=.48^{\prime \prime}
$$

Stress Due To Wind Moment


Portal, Columns Hinged.
(a)

Portal, Columns Fixed. Windward Pedestal. (b)
(c)

Before calculating the stress due to wind moment, it will be necessary to determine whether the end post is fixed or hinged.

If the end post is fixed.the negative moment developed at the lower pin will be $M=\frac{H d}{2}=\frac{3200 \times 226}{2}=361600$ in lbs.

In order to obtain this condition of fixidity. the stress in the member must develop a resisting moment equal in amount.

Therefore the post may be considered fixed if

$$
\left(\frac{95300-V}{2}\right) a \geqq \frac{H d}{2}
$$

or $\quad\left(\frac{95300-8520}{2}\right) 8 \geqq 361600$
but $347120<361600$ and the end post will not be fixed. (While this is the usual solution, the resisting moment certainly reduces the bending moment and the bending stress is less than computed below.)

The maximum moment will then occur at the foot of the portal knee brace and will be $M=3200 \times 226=723200$ in lbs.

Stress due to wind moment is a maximum in the leeward post and is

$$
\begin{aligned}
& f_{w}=\frac{M y_{1}}{I-\frac{\left.P\right|^{2}}{10 E}}=\frac{723200 \times 7}{27.5-\frac{(95300+12500) 350^{2}}{10 \times 28000000}} \\
& f_{w}= \pm 22480 \mathrm{lbs} .
\end{aligned}
$$

Stress, $f_{w}$, is compression on the windward side and tension on the leeward side of the member.
pression on the windward and tension on the leeward fibres. The maximum fibre stress will come at the foot of the knee brace either on the upper or lower fibres on the windward side of the post, depending upon whether the stress due to weight is greater than the stress due to eccentric loading, or the reverse. In this case the maximum stress comes on the lower fibres of the windward side of the post.

Combined Tension and Cross Bending.-The stress due to cross bending when the member is also subjected to direct tension is given by the formula

$$
\begin{equation*}
f_{1}=\frac{M_{1} y_{1}}{I+\frac{P l^{2}}{C E}} \tag{75}
\end{equation*}
$$

the nomenclature being the same as in $(7 \dot{4})$. The constant $c$ is takers equal to 10 where the ends are hinged.

## Stress in a Bar Due to its Own Weight:-

Let $b=$ breadth of bar in inches;
$h=$ depth of bar in inches;
$w=$ weight of bar per lineal inch $=0.28 \mathrm{~b} \mathrm{~h}^{\prime}$;
$f_{2}=\frac{P}{b h}=$ direct unit stress.
We will also have

$$
\begin{gathered}
y_{1}=1 / 2 h ; \\
M_{1}=1 / 8 w l^{2} ; \\
P=f_{2} b h .
\end{gathered}
$$

Substituting in (75) we have

$$
\begin{align*}
f_{1} & =\frac{\frac{1}{8} w l^{2} \frac{h}{2}}{\frac{b h^{3}}{12}+f_{2} \frac{b h l^{2}}{10 \times 28,000,000}} \\
& =\frac{4,900.000 h}{f_{2}+23,000,000\left(\frac{h}{l}\right)^{2}} \tag{76}
\end{align*}
$$

where $f_{1}$ is the extreme fibre stress in the bar due to weight, and is tension in lower fibre and compression in upper fibre.

If the bar is inclined, the stress obtained by formula ( 76 ) must be multiplied by the sine of the angle that the bar makes with a vertical line.

Formula (76) is much more convenient for actual use than formula (75).

Diagram for Stress in Bars Due to Their Own Weight.-Taking the reciprocal of (76) we have
and

$$
\begin{gather*}
\frac{1}{f_{2}}=\frac{f_{2}}{4,900,000 h}+\frac{23,000,000\left(\frac{h}{l}\right)^{2}}{4,900,000 h} \\
=y_{1}+y_{2} \\
f_{2}=\frac{1}{y_{1}+y_{2}} \tag{77}
\end{gather*}
$$

Fig. 78 gives values of $y_{1}$ for different values of $f_{2}$, and values of $y_{2}$ for different values of the length in feet, $L$. The values of $y_{3}$ and $y_{2}$ can be read off the diagram directly for any value of $h, f_{2}$, and L. And then, if the sum of $y_{1}$ and $y_{2}$ be taken on the lower part of the


Fig. 78. Diagram for finding stress in bars due to their own WEIGHT.
diagram, the reciprocal, which is the fibre stress $f_{1}$, may be read off the right hand side.

The use of the diagram will be illustrated by two problems:
Problem I. Required the stress in a $4^{\prime \prime} \times \mathrm{I}^{\prime \prime}$ eye-bar, 20 feet long, which has a direct tension of $56,000 \mathrm{lbs}$.

In this case, $h=4^{\prime \prime}, L_{1}=20 \mathrm{ft}$., and $f_{2}=14,000 \mathrm{lbs}$. per sq. in. The stress due to weight, $f_{1}$, is found as follows: On the bottom of the diagram find $h=4$ inches, follow up the vertical line to its intersection with inclined line marked $L=20$, and then follow the horizontal line passing through the point of intersection out to the left margin and find $y_{2}=3.3$ tens of thousandths; then follow the vertical line $h=4$ inches, up to its intersection with inclined line marked $f_{2}=14,000$, and then follow the horizontal line passing through the point of intersection out to the left margin and find $y_{1}=7.2$ tens of thousandths.

Now to find the reciprocal of $y_{1}+y_{2}=7.2+3.3=10.5$, find value of $y_{1}+y_{2}=10.5$ on lower edge of diagram, follow vertical line to its intersection with inclined line marked "Line of Reciprocals" and find stress $f_{1}$ by following horizontal line to right hand margin to be

$$
f_{1}=950 \mathrm{lbs} . \text { per sq. in. }
$$

By substituting in (76) and solving we get $f_{1}=960 \mathrm{lbs}$. per sq. in.
Problem 2. Required the stress in a $5^{\prime \prime} \times 3 / 4^{\prime \prime}$ eye-bar, 30 feet long, which has a direct tension of $60,000 \mathrm{lbs}$., and is inclined so that it makes an angle of $45^{\circ}$ with a vertical line.

In this case, $h=5^{\prime \prime}, L=30$ feet, $f_{2}=16,000 \mathrm{lbs}$., and $\theta=45^{\circ}$. From the diagram as in Problem 1, $y_{2}=1.8$ tens of thousandths, and $y_{1}=6.5$ tens of thousandths, and

$$
\begin{gathered}
f_{1}=\frac{1}{y_{1}+y_{2}} \sin \theta=1200 \times \sin \theta \\
=850 \mathrm{lbs} . \text { per sq. in }
\end{gathered}
$$

Relations between $h, f_{1}, f_{2}$ and $L$. For any values of $f_{2}$ and $L, f_{1}$ will be a maximum for that value of $h$ which will make $y_{1}+y_{2}$ a min-
imum. This value of $h$ will now be determined. Differentiating equation (76) with reference to $f_{1}$ and $h$, we have after solving for $h$ after placing the first derivation equal to zero

$$
\begin{equation*}
h=\frac{l}{4800} \sqrt{f_{2}} \tag{78}
\end{equation*}
$$

in which $h$ is the depth of bar which will have a maximum fibre stress for any given values of $l$ and $f_{2}$.

Now if we substitute the value of $h$ in (78) back in equation (76), we find that $f_{1}$ will be a maximum when $y_{1}=y_{2}$.

Now in the diagram the values of $y_{1}$ and $y_{2}$ for any given values of $f_{2}$ and $L$ will be equal for the depth of bar, $h$, corresponding to the intersection of the $f_{2}$ and $L$ lines.

It is therefore seen that every intersection of the inclined $f_{2}$ and $L$ innes in the diagram, has for an abscissa a value of $h$, which will have a maximum fibre stress $f_{1}$, for the given values of $f_{2}$ and $L$.

For example, for $L=30$ feet and $f_{2}=12,000 \mathrm{lbs}$. we find $h=$ 8.3 inches and $f_{1}=1700 \mathrm{lbs}$. For the given length $L$ and direct fibre stress $f_{2}$, a bar deeper or shallower than 8.3 inches will give a smaller value of $f_{1}$ than 1700 lbs .

Eccentric Riveted Connections.-The actual shearing stresses in riveted connections are often very much in excess of the direct shearing stresses. This will be illustrated by the calculation of the shearing stresses in the rivets in the standard connection shown in Fig. 79 and Fig. 80.

The eccentric force, $P$, may be replaced by a direct force, $P$, acting through the center of gravity of the rivets and parallel to its original direction, and a couple with a moment $M=P \times 3^{\prime \prime}=60,000$ inch-lbs. Each rivet in the connection will then take a direct shear equal to $P$ divided by $n$, where $n$ is the total number of rivets in the connection, and a shear due to bending moment $M$.

The shear in any rivet due to moment will vary as the distance,
and the resisting moment exerted by each rivet will vary as the square of the distance of the rivet from the center of gravity of all the rivets.

Now, if $a$ is taken as the resultant shear due to bending moment in a rivet at a unit's distance from the center of gravity, we will have the relation

$$
\begin{align*}
M & =a\left(d_{1}{ }^{2}+d_{2}{ }^{2}+d_{3}{ }^{2}+d_{4}{ }^{2}+d_{5}{ }^{2}\right) \\
& =a \Sigma d^{2} \\
\text { and } \quad a & =\frac{M}{\Sigma d^{2}}
\end{align*}
$$

The remainder of the calculations are shown in Fig. 79. The resultant shears on the rivets are given in the last column of the table

Direct Shear S $=20000 \div 5=4000 \mathrm{lbs}$.
Moment $=20000 \times 3=60000$ in lbs. $=a\left(d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}+d_{5}^{2}\right)$
Where $a=$ Moment shear on rivet 3 $=2630 \mathrm{lbs}$.

| Rivet | $d$ | $d^{2}$ | Moment | M | $S$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.70 | 7.29 | 19185 | 7100 | 4000 | 9300 |
| 2 | 1.90 | 3.61 | 9500 | 5000 | 4000 | 3200 |
| 3 | 1.00 | 1.00 | 2630 | 2630 | 4000 | 6630 |
| 4 | 1.90 | 3.61 | 9500 | 5000 | 4000 | 3200 |
| 5 | 2.70 | 7.29 | 19185 | 7100 | 4000 | 9300 |
| $a \sum d^{2}=22.80 a=60000$ in.lbs. | 20000 |  |  |  |  |  |
| $a=2630$ lbs. $=$ moment shear on rivet 3 |  |  |  |  |  |  |

$M=$ Shear due to Moment .
$S$ = Shear due to Direct Load, P
$R=$ Resultant Shear .


Fig. 79.
and are much larger than would be expected.
The force and equilibrium polygons for the resultant shears and load $P$, drawn in Fig. 80, close, which shows that the connection is in equilibrium.


Fig. 80.
STRESSES IN PINS.-A pin under ordinary conditions is a short beam and must be designed (I) for bending, (2) for shear, and (3) for bearing. If a pin becomes bent the distribution of the loads and the calculation of the stresses are very uncertain.

The cross bending stress, $S$, is found by means of the fundamental formula for flexure, $S=\frac{M c}{I}$, where the maximum bending moment $M$, is found as explained later; $I$ is the moment of inertia, and $c$ is the radius of a solid or hollow pin.

The safe shearing stresses given in standard specifications are for a uniform distribution of the shear over the entire cross section, and the actual unit shearing stress to be used in designing will be equal to the maximum shear divided by the area of the cross section of the pin.

The bearing stress is found by dividing the stress in the member by the bearing area of the pin, found by multiplying the thickness of the bearing plates by the diameter of the pin.


Fig. 8ob. Calculation of Stresses in a Pin by Algebraic Moments.

Calculation of Stresses.-The method of calculation will be illustrated by calculating the stresses in the pin at $U_{1}$ in (a) Fig. 8ob. In the complete investigation of the pin $U_{1}$, it would be necessary to calculate the stresses when the stress in $U_{1} U_{2}$ was a maximum, and when the stress in $U_{1} L_{2}$ was a maximum. Only the case where the stress in $U_{1} U_{2}$ is a maximum will be considered. However, maximum stresses in pins sometimes occur when the stress in $U_{1} L_{2}$ is a maximum, and this case should be considered in practice.

- Bending Moment.-The stresses in the members are shown in (c), which gives the force polygon for the forces. The makeup of the members is shown in (a), and the pin packing on one side is shown in (b). The stresses shown in (c) are applied one-half on each side of the member, the pin acting like a simple beam. The stresses are assumed as applied at the centers of the members.

Algebraic Method.-The amounts of the forces and the distances between their points of application as calculated from (b) are shown in (d). The horizontal and vertical components of the forces are considered separately, the maximum horizontal bending moment and
the maximum vertical bending moment are calculated for the same point, and the resultant moment is then found by means of the force triangle.

In (d) the horizontal bending moments are calculated about the points $1,2,3,4$; the maximum horizontal moment is to the right of 3 , and is $208,600 \mathrm{lb} .-\mathrm{in}$. The vertical bending moments are calculated about points $5,6,7,8$; the maximum vertical bending moment is to the right of 8 , and is $283,000 \mathrm{lb}$.-in. The maximum bending moment is at and to the right of 4 and 8 , and is $\sqrt{208,600^{2}+283,000^{2}}=351,600$ lb.-in.

Substituting in the formula $S=\frac{M c}{I}$, the maximum bending stress is $S=16,600 \mathrm{lbs}$. The allowable bending stress for which this bridge was designed was $18,000 \mathrm{lbs}$.

Graphic Method.-The amounts of the forces and the distances between their points of application are shown in (b) Fig. 8oc. The force polygon for the horizontal components is given in (c), and the bending moment polygon is given in (a). The maximum horizontal bending moment is to the right of 3 , and is $H \times y=200,000 \times \mathrm{I} .04=208,000$ lb.-in. The force polygon for the vertical forces is given in (d) and the bending moment polygon is given in (e). The maximum vertical bending moment is to the right of 8 , and is $H \times y=200,000 \times 1.42$ $=284,000 \mathrm{lb} .-\mathrm{in}$. The maximum bending moment occurs at and to the right of 4 and 8 , and is $351,000 \mathrm{lb}$.-in., as shown in (f).

Shear.-The shear is found for both the horizontal and vertical components as in a simple beam, and is equal to the summation of all the forces to the left of the section. The horizontal shear diagram is shown in (g), and the vertical shear diagram is shown in (h). The maximum horizontal shear is between I and 2 , and is $165,400 \mathrm{lbs}$. The shear between 2 and 3 is $165,400-99,300=66,100 \mathrm{lbs}$. The maximum vertical shear is between 6 and 7 , and is $126,300 \mathrm{lbs}$. The resultant shear between 2 and 3 and 6 and 7 is $\sqrt{126,300^{2}+66,100^{2}}=145,000$ lbs. as in (i), which is less than the horizontal shear between I and 2. The maximum shear therefore comes between I and 2 , and is 165,400 lbs. The maximum shearing unit stress is 5750 lbs . The allowable shearing stress was 9000 lbs .

Bearing.-The bearing stress in $L_{0} U_{1}$ is $165,650 \div 6 \times 1.94=$ $14,300 \mathrm{lbs}$. Bearing stress in $U_{1} U_{2}$ is $165,400 \div 6 \times 1.88=14,600$


Fig. 8oc. Calculation of Stresses in a Pin by Graphic Moments.
1bs. Bearing stress in $U_{1} L_{1}$ is $42,200 \div 6 \times 0.89=7900 \mathrm{lbs}$. Bearing stress in $U_{1} L_{2}$ is $107,000 \div 6 \times \mathrm{I}_{\frac{7}{16}}=12,400 \mathrm{lbs}$. The allowable bearing stress was $15,000 \mathrm{lbs}$.

## CHAPTER XVa.

Graphic Methods for Calculating the Deflection of Beams.
Introduction.-Algebraic methods for calculating the deflection of beams and the reactions of continuous beams are given in detail in standard works on applied mechanics. The graphic methods are, however, not given the attention that their elegance and simplicity merit. The underlying principles of the graphic method will be developed and a few applications of the method will be given in the


Fig. I.
following discussion. The discussion will be limited to beams with a constant moment of inertia.

Graphic Equation of the Elastic Curve.-Load a simple beam with a continuous load represented by the equation $y=f x$, as in (a)

Fig. I. Assume that each differential load, $y d x=f x d x$, acts through its center of gravity. Now construct a force polygon as in (c) and an equilibrium polygon as in (b) Fig. I.

Now, in (b) the tangent of the angle between any side of the equilibrium polygon and the X -axis is $\tan a=\frac{d y}{d x}$. If the string $b o$ in (b) is produced until it cuts the vertical line through 3, it will cut off the intercept $3-3^{1}$, which is the difference between two consecutive values of $d y$ and therefore equals $d^{2} y$.

Now, it has been proved that the moment of the force acting through point 2 in (b) about point 3 , is equal to the intercept $3-3^{1}$ multiplied by the pole distance $H$, is equal to $3-3^{1} \times H=d^{2}$ y $H$. But the moment of the differential load $f x d x$, which acts through point 2 , about point 3 , is $f x d x^{2}$, and

$$
f x d x^{2}=d^{2} y H
$$

and

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{f \cdot x}{H} \tag{I}
\end{equation*}
$$

It is evident that ( I ) is the differential equation of the equilibrium polygon in (b).

Now, if the loading is taken so that $y=f x=M$, where $M$ represents the bending moment at any given point $x$, due to a given loading, the equation for the equilibrium polygon becomes

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{M}{H} \tag{2}
\end{equation*}
$$

From mechanics we have the relation that

$$
\begin{equation*}
\frac{d^{2} y}{d \cdot x^{2}}=\frac{M}{E I} \tag{3}
\end{equation*}
$$

which differs from (2) only in having $E I$ substituted for $H, E$ being the modulus of elasticity and $I$ the moment of inertia of the given beam.

This relation may be deduced as follows: In (d) Fig. I, let equilibrium polygon $1-2-3$ represent the neutral axis of a beam as in
(a), the points $\mathrm{I}, 2$ and 3 being at a distance $d x$ apart. The distortion will be assumed to be so small that $d l=d x$. Now, the triangle $2-O-3$ may be taken as similar to triangle $3-2-3^{1}$ for small distortions, and

$$
O-2: 2-3:: 2-3: 3-3^{1}
$$

but $O-2$ equals $R, 2-3$ equals $d x$, and $3-3^{1}$ equals $d^{2} y$; and, therefore,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{\mathrm{I}}{R} \tag{4}
\end{equation*}
$$

Now, in a beam as in (e) Fig. I, the stresses at any point in the beam will vary as the distance from the neutral axis, and from similar triangles we have

$$
R: d x:: c: \Delta
$$

and

$$
\begin{equation*}
R \Delta=c d x \tag{5}
\end{equation*}
$$

Now, if $S$ is the fiber stress on the extreme fiber, and $E$ is the modulus of elasticity, we have

$$
\begin{gather*}
\Delta: S:: d x: E \\
\Delta E=S d x \tag{6}
\end{gather*}
$$

and, solving (5) and (6) for $R$, we have

$$
R S=E c
$$

But from the common theory of flexure we have $M c=S I$, and substituting

$$
\begin{equation*}
R=\frac{E I}{M} \tag{7}
\end{equation*}
$$

Substituting the value of $R$ in (7) and (4) we have

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{M}{E I} \tag{3}
\end{equation*}
$$

The preceding discussion gives the following simple graphic method for constructing the elastic curve of a beam:

Construct the bending moment polygon for the given loading on the beam. Load the beam zoith this bending moment polygon, and
with a force polygon having a pole distance equal to $E I$, construct an equilibrium polygon; this polygon will be the elastic curve of the beam. It is not commonly convenient to use a pole distance equal to $E I$, and a pole distance $H$ is used, where $N H$ equals $E I$; the deflection at any point will then be equal to the measured ordinate divided by $N$.

Simple Beam.-The simple beam will be considered when loaded with concentrated and uniform loads, using both algebraic and graphic methods.

Algebraic Method-Concentrated Load at Center of Beam.-The simple beam in (a) Fig. 2, is loaded with a load $P$ at the center. The bending moment diagram is shown in (b) and the beam is loaded with the bending moment diagram in (c) Fig. 2.

To find the equation of the elastic curve take moments of the forces to the left of a point at a distance $\cdot x$ from the left support, and

$$
-E I y=\frac{P L^{2} x}{16}-\frac{P x^{3}}{12}
$$

and

$$
\begin{equation*}
48 E I y=P\left(4 x^{3}-3 L^{2} x\right) \tag{8}
\end{equation*}
$$



Fig. 2.
Fig. 3.
The maximum deflection will occur when $x=1 / 2 L$ in (8), or it may be found by taking moments of forces to left of $x=1 / 2 L$ to be

$$
\begin{equation*}
\Delta=\frac{P L^{\frac{3}{3}}}{48 E I} \tag{9}
\end{equation*}
$$

Beam Uniformly Loaded.-The simple beam in (a) Fig. 3, is
loaded with a uniform load of $w$ per lineal foot. The bending moment parabola is shown in (b), and the beam is loaded with the bending moment parabola in (c) Fig. 3. To find the equation of the elastic curve, take moments of forces to the left of a point at a distance $x$ from the left support.

The equation of the bending moment parabola with the origin of co-ordinates at the left support is $y=1 / 2 w L x-1 / 2 w x^{2}$, the area of a segment of the parabola is $A=1 / 4 w L x^{2}-\mathrm{I}-6 w x^{3}$, and the center of gravity measured back from $x$ is

$$
-X=\frac{x(2 L-x)}{6 L-4 x}
$$

Taking moments of forces to the left of a point $x$, and reducing, we have

$$
\begin{equation*}
24 E I y=v\left(-x^{4}+2 L x^{3}-L^{3} x\right) \tag{10}
\end{equation*}
$$

The deflection is a maximum when $x=1 / 2 L$, and may be found directly by taking moments, or may be found from (io), and is

$$
\begin{equation*}
\Delta=\frac{5}{3^{84}} \frac{w L^{4}}{E I} \tag{II}
\end{equation*}
$$

Cantilever Beam-Concentrated Load.-The cantilever beam in (a) Fig. 4, has a concentrated load, $P$, at its extreme end. It will be seen that the cantilever beam may be considered as one-half of a simple beam with a span $2 L$, and a load $2 P$, at the center. The equation of the elastic curve may be found as in Fig. 2. Load the beam with the bending moment diagram as in (b) Fig. 4, and considering the cantilever as one-half of the simple beam we have, after reducing,

$$
\begin{equation*}
6 E I y=3 P L^{2} x-P x^{3} \tag{12}
\end{equation*}
$$



Fig. 4.

The maximum value of $\Delta$ is equal to $y$ when $x$ equals $L$, and

$$
\begin{equation*}
\Delta=\frac{P L^{3}}{3 E I} \tag{13}
\end{equation*}
$$

To find the maximum deflection we may take the moment of the entire bending-moment parabola about the point I , and

$$
\begin{aligned}
E I \Delta & =\frac{P L^{2}}{2} \times \frac{2}{3} L, \text { and } \\
\Delta & =\frac{P L^{3}}{3 E I}
\end{aligned}
$$

This method of finding the maximum deflection of a cantilever beam is the one to use in calculations, and will be used in the solution of the problem of the transverse bent.

Simple Beam-Graphic Method.-In Fig. 5 a simple beam is loaded with a load $P$, as shown. With force polygon (b), draw equilibrium polygon (c). Now load the beam with equilibrium polygon as in (c), and divide the area of the equilibrium polygon into segments, which are treated as loads acting through their centers of gravity. Construct force polygon (d) and draw equilibrium polygon (e).

Now, the deflection at any point having an ordinate $y$ in (e) will be, if proper scales are used,

$$
\Delta=\frac{y \times H \times H^{1}}{E I}
$$

In Fig. 5, if $P$ equals 3000 lbs ., and the area of the equilibrium polygon and pole distance $H^{1}$ are measured in square-foot pounds, pole distance $H$ in pounds, and $y$ in feet, we will have

$$
\Delta=\frac{y \times H \times H^{1} \times{ }_{1728}}{E I}
$$

$=1.88$ inches at center, while maximum value of deflection is $\Delta^{1}=1.92$ inches.

Tangents to Elastic Curve.-If strings 1 and 3 in (e) be pro-
duced, they will intersect at 2 on a line through the center of gravity of the moment-area polygon, and the strings $1-2$ and $2-3$ will be tangents to the elastic curve at the supports $R_{1}$ and $R_{2}$, respectively. This gives an easy method of constructing the tangents to the elastic curve without constructing the curve. It is also seen that the tan-


Fig. 5.
gents to the elastic curve depend only on the amount of the moment area and position of its center of gravity, and are independent of the arrangement of the moment areas.

Continuous Beams.-A beam which in an unstrained condition rests on more than two supports is a continuous beam. For a straight beam the supports must all be on the same level. Beams of one span with one end fixed and the other end supported, or with both ends fixed, may also be considered as continuous beams.

In Fig. 6a the continuous beam in (a) with spans $L_{1}$ and $L_{2}$ carries a uniform load $w$ per lineal foot. It is required to calculate the reactions $R_{1}, R_{2}$, and $R_{3}$.

The reactions of the continuous beam in (a) may be replaced by the reactions of the two simple beams loaded with the uniform load $w$ in (b), and the reactions and the load of the simple beam with the span $L_{1}+L_{2}$ and carrying a negative load $r_{2}^{\prime}$ in (c). The reactions in (a) will then have the following values; $R_{1}=r_{1}-r_{1}{ }^{\prime} ; R_{2}=r_{2}+r_{2}{ }^{\prime}$; $R_{3}=r_{3}-r_{3}{ }^{\prime}$.

Now the upward curvature of the beam in (a) due to the load $r_{2}{ }^{\prime}$ will be neutralized by the load above equal to $r_{2}{ }^{\prime}$ which is transferred to the reaction $R_{2}$ by flexure in the beam. The upward deflection of


Fig. 6a.
the beam in (c) at any point will be the bending moment divided by $E I$ at the same point in (d) due to a bending moment polygon with a maximum moment $M_{2}=r_{1}{ }^{\prime} \times L_{1}=r_{3}{ }^{\prime} \times L_{2}$; and the downward deflection of the beam in (b) at any point will be the bending moment divided by $E I$ at the same point in (d) due to the bending moment polygons for a uniform load $w$ covering the simple spans in (b). But the deflection of the beam in (a) is zero at the reaction $R_{2}$, and therefore the bending moment at the corresponding point in (d) is zero.

From the above discussion it follows that to calculate the reactions of the continuous beam in (a) by moment areas, take a simple beam with a span equal to $L_{1}+L_{2}$, and load it with the bending moment polygons for beams (b) and (c) as in (d) ; the bending moment in beam (d) at the points corresponding to the reactions will be equal to zero, and the reactions of beam (a) can be calculated by statics when the $M_{2}$ is obtained.

Continuous Beam-Concentrated Loads.-In (a) Fig. 6, a continuous beam of two equal spans of length $L$, is loaded with two equal loads $P$, at the centers of the spans. Calculate the bending


Fig. 6.
moments and load a simple beam with a span equal to $2 L$, with the bending-moment diagrams due to $P$ in each span, and with the negative bending-moment diagram due to the reaction $R_{2}$. Then to find $M_{2}$, the bending moment at 2 , take moments of forces to the left of 2 , and

$$
\begin{gathered}
\frac{M_{2} L^{2}}{2}+\frac{P L^{3}}{8}-\frac{M_{2} L^{2}}{6}-\frac{P L^{3}}{16}=0 \\
M_{2}=-\frac{3}{16} P L
\end{gathered}
$$

To calculate $R_{1}$ take moments in (a) about 2 , and

$$
R_{1} L-\frac{P L}{2}-M_{2}=0
$$

$$
R_{1}=\frac{5}{16} P=R_{2}
$$

and

$$
R_{2}=\frac{11}{8} P
$$

Beam Uniformly Loaded.-In (a) Fig. 7, a continuous beam of three equal spans of length $L$, is loaded with a uniform load equal to $w$ per foot. Calculate the bending moments due to a uniform load of $w$ on each span, and load a simple beam of span $3 L$ with the positive bending-moment diagrams due to load $w$, and with the negative bending-moment diagrams due to the reactions $R_{2}$ and $R_{3}$. The bending moment $M_{2}$ is equal to $M_{3}$. Now the deflection of the beam is zero at 2 and 3 , and the bending moments must, therefore, be zero at these points. Taking moments of forces to the left of 2 , we have


Fig. 7.

$$
\begin{gathered}
M_{2} L^{2}+\frac{w L^{4}}{8}-\frac{w L^{4}}{24}-\frac{M_{2} L^{2}}{6}=0 \\
M_{2}=-\frac{w L^{2}}{10}=M_{3}
\end{gathered}
$$

To calculate $R_{1}$ take moments about 2 in (a), and

$$
\begin{gathered}
R_{1} L-\frac{w L^{2}}{2}-M_{2}=0 \\
R_{1}=\frac{4}{10} w L=R_{4}
\end{gathered}
$$

$$
R_{2}=R_{3}=\frac{3}{2} w L-\frac{4}{10} w L=\frac{11}{10} w L
$$

Continuous Beam of $\mathbf{n}$ Spans.-To calculate the reactions for a continuous beam of $n$ spans, equal or unequal, loaded with any system or systems of loads proceed as follows:

Calculate the bending moment due to the external load, or loads, or system of loads in each span considered as a simple beam. Take a simple beam having a total length equal to the length of the continuous beam, and load it with the bending moment polygons found as above. Also load the beam with the bending moment polygons due to the reactions. The reactions being unknown, the bending moments at the reactions will be unknown. Now calculate the bending moment in the simple beam at points corresponding to each reaction and place the result equal to zero, for the reason that the deflection at the supports is zero.

For a continuous beam of $n$ spans there will be $n+1$ equations which is equal to the number of unknown reactions. Solving these equations the unknown moments will be found, and the reactions may be calculated algebraically.

Transverse Bent.-The problem of the calculation of the point of contra-flexure in the columns of a transverse bent-the algebraic

(a) (b) (c)

Fig. 8.
solution of which is given in Chapter XI-will now be solved by the use of moment areas. The nomenclature in Fig. 8 is the same as in

Chapter XI. It is assumed that the deflection at points $b$ and $c$ are equal.

In (b) Fig. 8, the deflection at $b$ from the tangent at $a$ is found by taking moments of the moment areas below $b$ to be

$$
\begin{align*}
E I \Delta & =\frac{M_{0} d}{2} \frac{2}{3} d-\frac{M_{1} d}{2} \frac{d}{3} \\
\Delta & =\frac{2 M_{0} d^{2}-M_{1} d^{2}}{6 E I} \tag{I4}
\end{align*}
$$

The deflection at $c$ from the tangent at $a$ is found by taking moments of moment areas below $c$ to be

$$
\begin{gather*}
E I \Delta^{1}=\frac{M_{0} d}{2}(h-d / 3)-\frac{2 M_{1}(h-d)^{2}}{6}-\frac{M_{1} d}{2}(h-2 / 3 d) \\
\Delta^{1}=\frac{M_{0}\left(3 d h-d^{2}\right)-M_{1}\left(2 h^{2}-h d\right)}{6 E I} \tag{15}
\end{gather*}
$$

But $\Delta$ is equal to $\Delta^{1}$ by hypothesis, and equating (14) and (15) we have

$$
2 M_{0} d^{2}-M_{1} d^{2}=M_{0}\left(3 d h-d^{2}\right)-M_{1}\left(2 h^{2}-h d\right)
$$

transposing,

$$
\begin{equation*}
M_{0}\left(3 h d-3 d^{2}\right)=M_{1}\left(2 h^{2}-h d-d^{2}\right) \tag{16}
\end{equation*}
$$

Now in (c) Fig. 8, it will be seen that $M_{0}: M_{1}:: y_{0}: d-y_{0}$, and

$$
\begin{equation*}
M_{0}\left(d-y_{0}\right)=M_{1} y_{0} \tag{17}
\end{equation*}
$$

Solving (16) and (17) for $y_{0}$, we have

$$
\begin{equation*}
y_{0}=\frac{d}{2} \frac{(2 h+d)}{(h+2 d)} \tag{18}
\end{equation*}
$$

which is the same value as was found by algebraic methods.
Reactions of Simple Draw Bridges.-The preceding methods are not adapted to the solution of problems involving moving loads, as in draw bridges. The following method, which is an application of curved influence lines, is quite simple in theory and application, al-
though requiring considerable labor in preparing the diagrams. The solution will first be explained and a proof given later:

Draw Bridge With Three Supports. -In Fig. 9 a continuous beam with spans $L_{1}$ and $L_{2}$ is loaded with concentrated moving loads represented by $P_{1}$ and $P_{2}$, as in (a).


Fig. 9.
In (b) load a simple beam having a span $L_{1}+L_{2}$ with a bend-ing-moment polygon due to the reaction $R_{2}$ (the value of $R_{2}$ is unknown, and any convenient load will do).

Divide the bending-moment diagram into segments, construct a force polygon as in (d) and draw an equilibrium polygon as in (c)

Fig. 9, assuming that the segments are loads acting through their centers of gravity.

The pole distance $H$ may be taken as any convenient length, and the pole $O$ may be taken at any point [in (c) the pole has been selected to bring the closing line horizontal for convenience only].

Then in (c)

$$
\begin{align*}
& R_{1}=\frac{P_{1} b-P_{2} d}{a}  \tag{19}\\
& R_{2}=\frac{P_{1} m+P_{2} n}{c}  \tag{20}\\
& R_{3}=\frac{-P_{1} e+P_{2} f}{g} \tag{21}
\end{align*}
$$

Proof.-The ordinates to the equilibrium polygon in (c) are proportional to the ordinates to the true elastic curve of the beam in (b), when it is loaded with a given load at 2 .

Now in (e), Fig. 9, if the deflection at 2 due to a load $P$ at I is $d$, then if the load $P$ be moved to 2 , the deflection at I will be $d$. This is known as Maxwell's Theorem, and is proved as follows.

Maxwell's Theorem.-Maxwell's Theorem is "In a beam if a load $P$ be placed at 1 , and the deflection $\Delta_{2}$ of the beam due to the load be measured at 2, (a), Fig. 9a, then if the load $P$ be placed at 2, (b), and the deflection $\Delta_{1}$ be measured at I , then $\Delta_{1}=\Delta_{2}$."

Proof.-Let the load $P$ be gradually applied at point I (c), Fig. 9a, and the work on the beam will be $W_{1}=\frac{1}{2} P \cdot \delta_{1}$ and the deflection at 2 will be $\Delta_{2}$. Then if a load $P$ be applied gradually at point 2 , the deflection at I will be $\Delta_{1}$, (e), Fig. 9a, and the work due to both loads will be

$$
\begin{equation*}
W=\frac{1}{2} P \cdot \delta_{1}+P \cdot \Delta_{1}+\frac{1}{2} P \cdot \delta_{2} \tag{2Ia}
\end{equation*}
$$

Now in (d), Fig. 9a, let $P$ be gradually applied at I, producing a deflection $\Delta_{1}$ at I , and the work on the beam will be $W_{2}=\frac{1}{2} P \cdot \delta_{2}$. Then if load $P$ be applied at point I in (f), Fig. 9a, the deflection at point 2 will be $\Delta_{2}$, and the work due to both loads will be

$$
\begin{equation*}
W=\frac{1}{2} P \cdot \delta_{1}+\frac{1}{2} P \cdot \delta_{2}+P \cdot \Delta_{2} \tag{2Ib}
\end{equation*}
$$

Now the work due to both loads will be independent of the order
of the application of the loads, and equating (2Ia) and (2Ib) and solving gives $\Delta_{1}=\Delta_{2}$, which proves the theorem.

Now in (c), Fig. 9, if the deflection due to a load unity at 2 is $m$ at $P_{1}$, then the deflection at 2 due to a load unity at $P_{1}$ will be $m$. If


Fig. 9a.
load $R_{2}$ is applied at 2 , the work done in making the elastic curve pass through 2 will be $\frac{1}{2} R_{2} \cdot c$; while the resistance due to a load $P_{1}$ will be $\frac{1}{2} P_{1}$ times the deflection at 2 due to the load $P_{1}$, which is equal to $\frac{1}{2} P_{1} \cdot m$. In like manner the resistance due to $P_{2}$ will be $\frac{1}{2} P_{2} \cdot n$, and

$$
R_{2} c=P_{1} m+P_{2} n
$$

and

$$
\begin{equation*}
R_{2}=\frac{P_{1} m+P_{2} n}{c} \tag{20}
\end{equation*}
$$

To find $R_{1}$ take moments about 3 in (a), Fig. 9, and

$$
R_{1}\left(L_{1}+L_{2}\right)+R_{2} L_{2}-P_{1} l_{1}-P_{2} l_{2}=0
$$

and from similar triangles in (c).

$$
\begin{equation*}
R_{1} a+R_{2} c-P_{1}(m+b)-P_{2}(n-d)=0 \tag{22}
\end{equation*}
$$

Substituting the value of $R_{2}$ from (20) in (22), we have

$$
\begin{align*}
& R_{1} a=P_{1} b-P_{2} d \\
& R_{1}=\frac{P_{1} b-P_{2} d}{a} \tag{19}
\end{align*}
$$

and since

$$
\begin{gather*}
R_{1}+R_{2}+R_{3}=P_{1}+P_{2} \\
R_{3}=\frac{-P_{1} e+P_{2} f}{g} \tag{2I}
\end{gather*}
$$

Uniform Load.-For a uniform load on the beam the areas of the diagram covered by the uniform load will be used in the place of the ordinates as in Fig. 9 (see discussion on Influence Diagrams, Chapter


Fig. if.
X). For example in Fig. io the reactions are given by the following formulas:

$$
\begin{align*}
& R_{1}=\frac{p\left(\text { area } B_{1}-\operatorname{area} B_{2}\right)}{a}  \tag{23}\\
& R_{2}=\frac{p\left(\text { area } A+\text { area } B_{2}+\text { area } C_{1}\right)}{c}  \tag{24}\\
& R_{3}=\frac{p\left(\text { area } C_{2}-\text { area } C_{1}\right)}{g} \tag{25}
\end{align*}
$$

Draw Bridge with Four Supports.-To find the reaction at $R_{2}$ in Fig. II, proceed as follows: With a load represented by the triangle I-2-4, construct a force polygon (not shown) and draw an equilibrium polygon passing through $m-n-o-p$. Now, with a load represented by the triangle $1-3-4$, construct a force polygon (not shown) and draw an equilibrium polygon passing through $m-o-p$. The method of drawing an equilibrium polygon through three points is explained in Chapter V, Fig. 20.


Fig. it.
Then in (c), Fig. II,

$$
R_{2} d=P_{1} a+P_{2} b-P_{3} c
$$

and

$$
\begin{equation*}
R_{2}=\frac{P_{1} a+P_{2} b-P_{3} c}{d} \tag{26}
\end{equation*}
$$

$R_{3}$ may be found in a similar manner by drawing an equilibrium polygon for a load, $1-3-4$, through point $n$.

When $R_{2}$ and $R_{3}$ have been obtained, the reactions $R_{1}$ and $R_{4}$ can most easily be obtained by algebraic moments.

Proof.-With the load, 1-2-4, and full line deflection curve we have, as in the case of three supports,

$$
\begin{equation*}
R_{2}(d+h)=-R_{3} k+P_{1}(a+e)+P_{2}(b+f)+P_{3} g \tag{27}
\end{equation*}
$$

And with the load, I-3-4, and dotted line deflection curve we have, in like manner,

$$
\begin{equation*}
R_{3} k=-R_{2} h+P_{1} e+P_{2} f+P_{3}(c+g) \tag{28}
\end{equation*}
$$

Subtracting (28) from (27) we have

$$
\begin{array}{r}
R_{2} d=P_{1} a+P_{2} b-P_{3} c \\
R_{2}=\frac{P_{1} a+P_{2} b-P_{3} c}{d} \tag{29}
\end{array}
$$

which is the equation of which proof was required.

## PART III.

## DESIGN OF MILL BUILDINGS.

## CHAPTER XVI.

General Design.

General Principles.-The general dimensions and outline of a mill building will be governed by local conditions and requirements. The questions of light, heat, ventilation, foundations for machinery, handling of materials, future extensions, first cost and cost of maintenance should receive proper attention in designing the different classes of structures. One or two of the above items often determines the type and general design of the structure. Where real estate is high, the first cost, including the cost of both land and structure, causes the adoption in many cases of the multiple story building, while on the other hand where the site is not too expensive the single story shop or mill is usually preferred. In coal tipples and shaft houses the handling of materials is the prime object; in railway shops and factories turning out heavy machinery or a similar product, foundations for the machinery required, and convenience in handling materials are most important; while in many other classes of structures such as weaving sheds, textile mills, and factories which turn out a less bulky product with light machinery, and which employ a large number of men, the principal items to be considered in designing are light, heat, ventilation and ease of superintendence.

Shops and factories are preferably located where transportation facilities are good, land is cheap and labor plentiful. Too much care cannot be used in the design of shops and factories for the reason that defects in design that cause inconvenience in handling materials and workmen, increased cost of operation and maintenance are permanent and cannot be removed.

The best modern practice inclines toward single floor shops with as few dividing walls and partitions as possible. The advantages of this type over multiple story buildings are (1) the light is better, (2) ventilation is better, (3) buildings are more easily heated, (4) foundations for machinery are cheaper, (5) machinery being set directly on the ground causes no vibrations in the building, (6) floors are cheaper, (7) workmen are more directly under the eye of the superintendent, (8) materials are more easily and cheaply handled, (9) buildings admit of indefinite extension in any direction, (10) the cost of construction is less, and (ii) there is less danger from damage due to fire.

The walls of shops and factories are made (i) of brick, stone, or concrete; (2) of brick, hollow tile or concrete curtain walls between steel columns; (3) of expanded metal and plaster curtain walls and glass; (4) of concrete slabs fastened to the steel frame; and (5) of corrugated iron fastened to the steel frame.

The roof is commonly supported by steel trusses and framework, and the roofing may be slate, tile, tar and gravel or other composition, tin or sheet steel, laid on board sheathing or on concrete slabs, tile or slate supported directly on the purlins, or corrugated steel supported on board sheathing or directly on the purlins. Where the slope of the roof is flat a first grade tar and gravel roof, or some one of the patent composition roofs is used in preference to tin, and on a steep slope slate is commonly used in preference to tin or tile. Corrugated steel roofing is much used on boiler houses, smelters, forge shops, coal tipples, and similar structures.

Floors in boiler houses, forge shops and in similar structures are generally made of cinders; in round houses brick floors on a gravel or
concrete foundation are quite common; while in buildings where men have to work at machines the favorite floor is a wooden floor on a foundation of cinders, gravel, or tar concrete. Where concrete is used for the foundation of a wooden floor it should be either a tar or an asphalt concrete, or a layer of tar should be put on top of the cement concrete to prevent decay. Concrete or cement floors are used in many cases with good results, but they are not satisfactory where men have to stand at benches or machines. Wooden racks on cement floors remove the above objection somewhat. Where rough work is done, the upper or wearing surface of wooden floors is often made of yellow pine or oak plank, while in the better classes of structures, the top layer is commonly made of maple. For upper floors some one of the common types of fireproof floors, or as is more common a heavy plank floor supported on beams may be used.

Care should be used to obtain an ample amount of light in buildings in which men are to work. It is now the common practice to make as much of the roof and side walls of a transparent or translucent material as practicable ; in many cases fifty per cent of the roof surface is made of glass, while skylights equal to twenty-five to thirty per cent of the roof surface are very common, Direct sunlight causes a glare, and is also objectionable in the summer on account of the heat. Where windows and skylights are directly exposed to the sunlight they may best be curtained with white muslin cloth which admits much of the light and shades perfectly. The "saw tooth" type of roof with the shorter and glazed tooth facing the north, gives the best light and is now coming into quite general use.

Plane glass, wire glass, factory ribbed glass, and translucent fabric are used for glazing windows and skylights. Factory ribbed glass should be placed with the ribs vertical for the reason that with the ribs horizontal, the glass emits a glare which is very trying on the eyes of the workmen. Wire netting should always be stretched under skylights to prevent the broken glass from falling down, where wire glass is not used.

Heating in large buildings is generally done by the hot blast system in which fans draw the air across heated coils, which are heated by exhaust steam, and the heated air is conveyed by ducts suspended from the roof or placed under the ground. In smaller buildings, direct radiation from steam or hot water pipes is commonly used.

The proper unit stresses, minimum size of sections and thickness of metal will depend upon whether the building is to be permanent or temporary, and upon whether or not the metal is liable to be subjected to the action of corrosive gases. For permanent buildings the author would recommend $16,000 \mathrm{lbs}$. per square inch for allowable tensile, and 16,000-70 $\frac{l}{r}$ lbs. per square inch for allowable compressive stress for direct dead, snow and wind stresses in trusses and columns; $l$ being the center to center length and $r$ the radius of gyration of the member, both in inches. For wind bracing and flexural stresses in columns due to wind, add 25 per cent to the allowable stresses for dead, snow and wind loads. For temporary structures the above allowable stresses may be increased 20 to 25 per cent.

The minimum size of angles should be $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$, and the minimum thickness of plates $1 / 4^{\prime \prime}$, for both permanent and temporary structures. Where the metal will be subjected to corrosive gases as in smelters and train sheds, the allowable stresses should be decreased 20 to 25 per cent, and the minimum thickness of metal increased 25 per cent, unless the metal is fully protected by an acid-proof coating (at present the best paints do little more in any case than delay and retard the corrosion).

The minimum thickness of corrugated steel should be No. 20 gage for the roof and No. 22 for the sides; where there is certain to be no corrosion Nos. 22 and 24 may be used for the roof and sides respectively.

The different parts of mill buildings will be taken up and discussed at some length in the following chapters.

## CHAPTER XVII.

## Framework.

Arrangement.-The common methods of arranging the framework in simple mill buildings are shown in Fig. I, Fig. 8I and Fig. 82. The different terms which are used in the discussion that follows will be made clear by an inspection of Fig. I and Fig. 8r.


Fig. 8I.
The three types of mill buildings-steel frame mill buildings, mill buildings with masonry filled walis, and mill buildings with masorry walls-have been discussed in the Introduction.
The end post bent, shown in (a) Fig. I and in Fig. 8I, usually requires less material than the end trussed bent shown in (b) Fig. I and in Fig.

82, and is commonly used for simple mill buildings. Extensions can be made with about equal ease in either case, and the choice of methods will usually be determined by the local conditions of the problem and


Fig. 82. A. T. \& S. F. R. R. Blacksmith Shop, Topeka, Kas.
the fancy of the designer. In train sheds and similar structures the end trussed bent (b), Fig. I, is used. Where the truss span is quite long, as in train sheds, the end trusses are often designed for lighter loads than are the intermediate trusses, thus saving considerable material. In the case of simple mill buildings of moderate size all trusses are, however, commonly made alike, the extra cost of detailing being usually more than the amount saved in material.

In train sheds, coliseums, and similar structures requiring a large floor space, the three-hinged arch is very often used in place of the typical transverse bent system.

The various parts of the framework of mill buildings will be taken up and discussed in order.

TRUSSES.-Types of Trusses.-The proper type of roof truss to use in any particular case will depend upon the span, clear headroom, style of truss preferred, and other conditions. For spans up to about Ioo feet, the Fink type of truss is commonly used. This type of truss has the advantage of short struts, simplicity of details and economy. The stresses that control the design are with but a very few exceptions
those caused by an equivalent uniform dead load, thus simplifying the calculation of stresses (see Table VI).

The outline of the truss will depend upon the spacing of the purlins, and upon whether or not the purlins are placed at the panel points of the truss. The most economical and pleasing arrangement is to make a panel point in the truss under each purlin. Taking the normal wind load on the roof at from 25 to 30 lbs . per sq. ft., it will be seen in Fig. 112 that for Nos. 20 and 22 corrugated steel, when used without sheathing, the purlins should be spaced from 4 to 5 feet. If this spacing is exceeded corrugated steel roofing supported directly on the purlins is almost certain to leak. Where sheathing is used the purlin spacing can be made greater. Many designers, however, pay no attention to the matter of placing the purlins at the panel points, the upper chord of the truss being stiffened to take the flexural stress.

In Fig. 83, (a) shows the form of a Fink truss for a span of 30 feet; (b) for a span of 40 feet; (c) for a span of 50 feet; (d) for a span of 60 feet; and (e) for a span of 80 feet, on the assumption that the purlins are spaced from 4 to 5 feet, and come at the panel points of the truss. If trusses with vertical posts are desired the triangular trusses (h) and (j), or Fink truss (f) may be used. The truss shown in (i) is occasionally used for long spans, although it has little to recommend it except novelty. The truss shown in ( k ) is used where there is ample headroom. The quadrangular truss shown in (1) and the camels back truss shown in (m), are used for long spans where the appearance of the truss is an important feature, as in convention halls and train sheds. The lower chords of mill building trusses are usually made horizontal, but by giving the lower chord a camber, as in (g), the appearance from the side is greatly improved.

The "saw tooth" or "weaving shed" roof shown in (a) Fig. 84. has been used abroad for many years and is now coming into quite general use in this country for shops and factories as well as for weaving sheds, as indicated by the name. The short leg of the roof is made inclined as in (a), or vertical as in ( ${ }^{\mathrm{b}}$ ), and is glazed with glass or
translucent fabric. The glazed leg of the roof is made to face the north, thus giving a constant and agreeable light and doing away with the use of window shades.

The principal difficulty in saw tooth roof construction is in obtain-

(a) 30 Ft . Span

(b) 40 Ft Span

(c) 50 Ft . Span

(d) $60 \mathrm{~F}+$ Span

(f) Modifiea Fink

(e) 80 Ft Span

(g) Camberea Fink

FINK TRUSSES

(h) Howe

(J) Pratt

(I) Quadrangular

(i) Hybria

(k) Modified Pratt

(m) Camels Back

Fig. 83. Types of roof trusses.
ing satisfactory and efficient gutters, and in preventing condensation on the inner surface of the glass and gutters. Another objection to the use of saw tooth roofs in localities having a heavy snowfall is that the snow drifts the roof nearly full and shuts off the light. The common method of preventing the snow from collecting, and for taking care of the roof water, is that given in the description of the Conkey plant, which see.

The modified saw tooth roof shown in (b), Fig. 84, is proposed by the author as a substitute for the usual type of saw tooth roof shown in (a). This modified saw tooth roof allows the use of ordinary valley gutters, and gives an opportunity to take care of the condensation on the inner surface of the glass by suspending a gutter at the bottom of the monitor leg. Snow will cause very little trouble

(d) Saw Tooth (Weaving Shed)

(b) Modified Saw Tooth

Fig. 84.
with this roof on account of the increased depth of gutter. The modified saw tooth roof has a greater pitch, and has a more economical truss for long spans than the common form shown in (a). Condensation on the inner surface of the glazed leg can be practically prevented by using double glazing with an air space between the sheets of glass. Double
glazing in windows and skylights makes the building much easier to heat, the air space making an almost perfect non-conductor.

Brown \& Sharpe Foundry. -In the Brown \& Sharpe Mfg. Company's Foundry, a modification of the saw tooth roof was adopted in which glass was used on both surfaces of the roof. The skylights extend east and west and have a pitch of 45 degrees. The southerly pitch is glazed with opaque glass, the other with ordinary rough glass. The ventilator monitor, which surmounts the skylights, is glazed with opaque glass on the southerly side, and extends high enough so that no light up to an angle of 70 degrees reaches the glass below. By this arrangement no direct sunlight is admitted to the shop from above excepting for a few minutes at noon during the longest days of the year. The result of this overhead light, combined with the almost wholly glass walls of the room is that the floor below is as light as out of doors, to all intents and purposes, yet diffused light only is admitted. A rod placed upright on the floor of one of these rooms casts no shadow.

Conkey Printing Plant*.-The printing plant of the W. B. Conkey Co., Hammond, Ind., consists of a single story building, $540 \times 450 \mathrm{ft}$. The roof is of the weaving shed or saw tooth type and all windows are glazed with frosted glass and are placed at an angle, looking toward the north. Every 29 feet of roof space provides II feet of light. Owing to the angle of the roof the direct rays of light are kept out of the building, which is thus lighted by the soft reflected rays from the northern sky. The entire roof is built up out of light structural steelwork resting on cast iron columns spaced 29 ft . c. to c. one way, and 16 $\mathrm{ft} . \mathrm{c}$. to c . in the other direction. The height of the trusses above the floor is 12 ft . To prevent the snow collecting in the valleys between the skylights, the bottom of the gutter and the glass are kept heated so that the snow melts as it falls. This method produces condensation on the inner surface of the glass, which is collected in a system of condensation gutters and carried outside the building.

The heating and ventilating of the building is accomplished by a blast system, with the heating ducts under the floor, which supply registers throughout the plant, arranged on the side walls of each department. The heating system can be made to produce a mild heat for the seasons of spring and fall, and can also be turned into a cooling system in the summer, by running cold water through the steam pipes at

[^7]the fan and changing the air every 15 minutes with cool air in hot weather.

The floor is built of heavy plank and finished maple laid on sleepers which are bedded in cinders. The walls are made of heavy tile and the openings are closed with iron fire doors. The building is practically fireproof and takes a very low rate of insurance.

Boyer Plant.-The Boyer Plant of the Chicago Pneumatic Tool Co., at Detroit, Mich., is $325 \times 185 \mathrm{ft}$., with the longer dimension extending north and south. The roof of the building is divided into two sections, having spans of about 92 ft . each, a pitch of about $I / 4$, and is covered with Patent Asbestos Roofing-manufactured by H. W. JohnsManville Co., Milwaukee, Wis.-laid on $11 / 8$-in. plank sheathing. The building is lighted by means of saw tooth skylights facing north and extending from the ridge of the roof to within about 6 ft . of the eaves on the outside and the valley gutter on the inside. The trusses are spaced I 6 ft . apart, and there are three saw tooth skylights between each pair of trusses, making 240 skylights in the roof. The north leg of the saw tooth is vertical and is glazed with double corrugated glass, the south leg is covered with asbestos roofing. The building is ventilated by means of circular ventilators placed in the ridge of the roof and spaced I 6 ft . apart. The lighting in this building is almost perfect. The roofing has given satisfaction with the exception of the large valley gutters, which will be covered with copper or lead in the near future. There has been a little trouble with condensation, but not enough to make it necessary to go to the expense of putting in condensation gutters.

This building is described in the Railway and Engineering Review, March 9, 1901.

For additional details of saw tooth roofs see Fig. 97.
The cross-section of a locomotive shop for the Eastern Railway of France is shown in Fig. 85. The entire building is made of fireproof materials, the framework is of iron and the roof of sheet metal and glass. The building extends from east to west and has a saw tooth roof, with the shorter leg facing north, and glazed with crinkled glass. The floor is made of treated oak cubes measuring 3.94 in . on the edge, set with the grain vertical, on a bed of river sand about 8 in . thick. The saw tooth roof is well suited to structures of this class.

Example of Ketchum's Modified Saw Tooth Roof.-The modified form of saw tooth roof described above was proposed by the author in the first edition (1903). This form of saw tooth roof has recently (1905) been used in the paint shops of the Plank Road Shops of the Public Service Corporation of New Jersey, Newark, N. J. The building proper is 135 feet wide by 354 feet long. The main trusses are of the modified saw tooth type with $44-\mathrm{ft}$. spans and a rise of $\mathrm{I} / 4$, and are spaced 16 ft . centers. The general details of one of the main trusses are shown in Fig. 84a.

The building has an independent steel framing with brick curtain walls on the exterior. Pilasters 24 in . by 20 in . are placed i6 feet apart under the ends of the trusses, the intermediate curtain walls being 12 inches thick.

The roof is a 5 -ply slag roof laid on 2 - in. tongued and grooved spruce sheathing, which is spiked to $2 \mathrm{in} . \times 5 \mathrm{in}$. spiking strips, which are bolted to 8 -in. channel purlins spaced 6 feet centers. The slag roofing is laid to comply with standard specifications as described in Part IV.


Fig. 84a. Modified Saw Tooth Roof, Paint Shop, Public Service Corporation.

The roof water is carried down 5 -in. cast iron leaders attached to alternate interior columns.

The sash in the vertical leg are in two rows, the upper row being hinged at their centers, thus providing ample ventilation. Condensation gutters are placed below the vertical leg to take the drip. The skylight area is about 20 per cent of the roof area, the window area is about 45 per cent of the outside walls, while about 28 per cent of the entire outside surface of the building is of g.ass. All glazing is of $1 / 8-\mathrm{in}$. ribbed wire glass, with the ribs placed vertical.

The skylight frames and moldings are made of No. 24 galvanized iron, while the entire roof is flashed with $16-\mathrm{oz}$. copper sheets, 4 feet wide, and counter flashed with sheet lead.

Louisville \& Nashville R. R. Shops.-The saw tooth roof shown in Fig. 84b was used in the South Louisville shops of the Louisville \& Nashville R. R. The roof covering is composed of composition roofing on the pitched roof and asphalt and gravel roofing on the flat portions laid on $13 / 4^{\prime \prime}$ dressed and matched sheathing.


Fig. 84b. Saw Tooth Roof, Louisville \& Nashville R. R. Shops.
The short leg of the saw tooth is glazed with ribbed wire glass, and the building is ventilated by means of 12 -inch circular ventilators placed in the peak of the saw teeth and spaced $30^{\prime} 2^{\prime \prime}$.

Saw Tooth Roof of the Ingersoll-Sargent Drill Co.-The design of the saw tooth roof used on the Rock Drill building is shown in Fig. 84 c . The floors are of concrete and the roof is of reinforced concrete covered with felt and slag. Ribbed glass is used in the glazed tooth. It will be noticed that electric motors for driving the machinery are
placed on small platforms resting on the lower chords of the roof trusses.


Fig. 84c. Saw Tooth Roof for Rock Drill Building.*
Erecting and Machine Shop of P. \& L. E. R. R.-The locomotiveerecting and machine shop of the P. \& L. E. R. R., at McKees Rocks is $533^{\prime} \times \mathrm{I} 68^{\prime} \mathrm{I}^{\prime \prime}$, and is designed with a self-supporting frame with brick curtain walls.

The details of the roof are shown in the cross-section in Fig. 84d, the machine shop being well lighted by three saw tooth windows. The roofing is asphalt and felt laid on $13 / 8^{\prime \prime}$ tongued and grooved boards. The gutters are heavily flashed with asphalt and felt. The roof water in the saw tooth part is carried by $4^{\prime \prime}$ conductors to $5^{\prime \prime}$ vertical discharge pipes, attached to alternate columns ( 40 ft . apart) as shown. The details of the saw tooth windows are given in Fig. 157a. The floors have a I-3-5 Portland cement concrete base $4^{\prime \prime}$ thick, on this are placed five layers of felt saturated with asphalt for waterproofing. This is covered with a layer of dry sand about $5^{\prime \prime}$ thick and the $4^{\prime \prime} \times 378^{\prime \prime}$ floor stringers are well bedded in the sand. The wearing floor consists of a sub-floor of $23 / 4^{\prime \prime}$ yellow pine and a top floor of $11 / 8^{\prime \prime}$ tongued and grooved maple. Wire boxes are put in as shown in Fig. 84d to carry power and light wires.

[^8]


Fig. 85. Locomotive Shop, Eastern Railway of France.
A few of the forms of trusses in common use where ventilation and light are provided for are shown in Fig. 86. The Fink truss with


Fig. 86.
monitor ventilator and skylights in the roof shown in (a), is a favorite tvpe for shops; truss (b) with double monitor ventilator is especially adapted to round house construction; trusses (c) and (e) are adapted to shop and factory construction where a large amount of light is desired, ventilation being obtained by means of circular ventilators; truss (d) is similar to (c) and (e), but allows of better ventilation; truss ( f ) has skylights in the roof and has circular ventilators placed along the ridge of the roof; truss (g) is the type in common use for blacksmith shops, boiler houses, and roofs of small span. The "silk mill" roof shown in (h) was used by the Klots Throwing Co. in their silk mill at Carbondale, Pa. The spans of the three trusses are $48^{\prime \prime} 8^{\prime \prime}$ each, with a clerestory of $13^{\prime} 9^{\prime \prime}$ in the monitor ventilators, which are glazed with glass $\mathrm{II}^{\prime} \mathrm{o}^{\prime \prime}$ high. The monitors face east and west, allowing a maximum amount of direct sunlight in the morning and evening, and none at midday. This roof has given very satisfactory results, however, it would seem to the author that it would be necessary to use shades, and that there would be shadows in the building. The trusses in this building are spaced $10^{\prime} 6^{\prime \prime}$ apart and support the plank sheathing which carries the roof, no purlins being used. The shafting to run the machinery in this building is placed in a sub-basement; a method much more economical and convenient than the common one of suspending the shafting from the trusses.

Pitch of Roof.-The pitch of a roof is given in terms of the center height divided by the span; for example a $60-\mathrm{ft}$. span truss with $1 / 4$ pitch will have a center height of 15 ft . The minimum pitch allowable in a roof will depend upon the character of the roof covering, and upon the kind of sheathing used. For corrugated steel laid directly on purlins, the pitch should preferably be not less than $1 / 4$ ( $6^{\prime \prime}$ in $12^{\prime \prime}$ ), and the minimum pitch, unless the joints are cemented, not less than $1 / 5$. Slate and tile should not be used on a less slope than $1 / 4$ and preferably not less than $1 / 3$. The lap of the slate and tile should be greater for the less pitch. Gravel should never be used on a roof with a greater pitch than about $I / 5$, and even then the composition is very liable to run. As-
phalt is inclined to run and should not be used on a roof with a pitch of more than, say, 2 inches to the foot. If the laps are carefully made and cemented a gravel and tar or asphalt roof may be practically flat; a pitch of $3 / 4$ to I inch to the foot is, however, usually preferred. Tin may be used on a roof of any slope if the joints are properly soldered. Most of the patent composition roofings give better satisfaction if laid on a roof with a pitch of $1 / 5$ to $1 / 4$. Shingles should not be used on a roof with a pitch less than $1 / 4$, and preferably the pitch should be $1 / 3$ to $\mathrm{I} / 2$.

Pitch of Truss.-There is very little difference in the weight of Fink trusses with horizontal bottom chords, in which the top chord has a pitch of $1 / 5,1 / 4$, or $1 / 3$. The difference in weight is quite noticeable, however, when the lower chord is cambered; the truss with the $1 / 3$ pitch being then more economical than either the $1 / 5$ or the $1 / 4$ pitch. Cambering the lower chord of a truss more than, say, $1-40$ of the span adds considerable to the weight. For example the computed weights of a $60-\mathrm{ft}$. Fink truss with a horizontal lower chord, and a $60-\mathrm{ft}$. Fink truss with a camber of 3 feet in the lower chord, showed that the cambered truss weighed 40 per cent more for the $1 / 4$ pitch and 15 per cent more for the $1 / 3$ pitch, than the truss having the same pitch with horizontal lower chord. It is, however, desirable for appearance sake to put a slight camber in the bottom chords of roof trusses, for the reason that to the eye a horizontal lower chord will appear to sag if viewed from one side.

In deciding on the proper pitch, it should be noted that while the $1 / 3$ pitch gives a better slope and has a less snow load than a roof with $1 / 4$ or $1 / 5$ pitch, it has a greater wind load and more roof surface. Taking all things into consideration $1 / 4$ pitch is probably the most economical pitch for a roof. A roof with $\mathrm{I} / 3$ pitch is, however, very nearly as economical, and should preferably be used where corrugated steel roofing is used without sheathing, and where the snow load is large.

Economic Spacing of Trusses.-The weight of the trusses and columns per square foot of area decreases as the spacing increases, while
the weight of the purlins and girts per square foot of area increases as the spacing increases. The economic spacing of the trusses is a function of the weight per square foot of floor area of the truss, the purlins, the side girts and the columns, and also of the relative cost of each kind of material. For any given conditions the spacing which makes the sum of these quantities a minimum will be the economic spacing. It is desirable to use simple rolled sections for purlins and girts, and under these conditions the economic spacing will usually be between 16 and 25 feet. The smaller value being about right for spans up to, say, 60 feet, designed for moderate loads, while the greater value is about right for long spans, designed for heavy loads.


Fig. 87. Steel roof covered with ludowici tile.

Calculations of a series of simple Fink trusses resting on walls and having a uniform span of 60 feet, and different spacings gave the least weight per square foot of horizontal projection of the roof for a spacing of 18 feet, and the least weight of trusses and purlins combined for a spacing of to feet. The weight of trusses per square foot was, however, more for the $10-\mathrm{ft}$. spacing than for the $18-\mathrm{ft}$. spacing, so that the actual cost of the steel in the roof was a minimum for $/ a$
spacing of about 16 feet; the shop cost of the trusses per pound being several times that of the purlins. Local conditions and requirements

usually control the spacing of the trusses so that it is not necessary that we know the economic spacing very definitely.

For long spans the economic spacing can be increased by using rafters supported on heavy purlins, placed at greater distances than would be required if the roof were carried directly by the purlins. This method is frequently used in the design of train sheds and roofs of buildings where plank sheathing is used to support slate or tile coverings, or where the tiles are supported by angle sub-purlins spaced close together as shown in Fig. 87.

TRANSVERSE BENTS.-The proper cross-section for a mill building will depend upon the use to which the finished structure is to

be put. A number of the common types of transverse bents are shown in Fig. 88. Transverse bents (a), (b), (d) and (h) are commonly used for boiler houses, shops and small train sheds. Where a traveling crane is desired, the crane girders are commonly suspended from the trusses in the bents referred to, although the crane may be made to span the entire building as in (h). Transverse bent (d) was used for a round house with excellent results. Transverse bents (f) and (g) are quite commonly used where it is desired that the main part of the building be open and be provided with a traveling crane that will sweep
the building, while the side rooms are used for lighter tools and miscellaneous work. Transverse bent (c) may be used in the same way as (g), by supplying a traveling crane. Transverse bent (e) is very often used for shops.

Cross-sections of the locomotive shops of several of the leading railways are shown in Figs. 89 to 92, inclusive, and the locomotive shops of the A. T. \& S. F., and the Philadelphia and Reading Railroads are described in detail in Part IV. For the most part these buildings


Fig. 90.
are built with self-supporting frames, and have brick walls built outside the framing. The arrangement of the cranes, provisions for light-


Fig. 91.
ing and ventilating, and the main dimensions are shown in the cuts and need no explanation.


A cross-section and end view of the train shed of the Richmond Union Passenger Station are shown in Fig. 93. Riveted trusses are


Train Shed-Richmond Union Passenger Station.
Fig. 93.
quite generally used in train sheds; a notable exception to this statement, however, being the trusses for the new train shed of the C. R. I. \& P., and L. S. \& M. S. Railways in Chicago. The trusses in this structure have a length of span of 207 ft ., a rise of the bottom chord of 40 ft . and a depth of truss at the center of 25 ft . The trusses are pin connected, the compression members being built up channels and the tension members eye-bars. The building is described in detail in Engineering News, August 6, 1903.

Truss Details.-Riveted trusses are commonly used for mill buildings and similar structures. For ordinary loads, the upper and lower
chords, and the main struts and ties are commonly made of two angles placed back to back, forming a T-section, the connections being made by means of plates. The upper chord should preferably be made of unequal legged angles with the short legs turned out. Sub-struts and ties are usually made of one angle. Flats should not be used. Where a truss member is made of two angles placed back to back, the angles should always be riveted together at intervals of 2 to 4 feet.

Trusses that carry heavy loads or that support a traveling crane or hoist, are very often made with a lower chord composed of two channels placed back to back and laced or battened, and are sometimes made with channel chord sections throughout (see Fig. 175).

When the purlins are not placed at the panel points of the truss the upper chord must be designed for flexure as well as for direct stress. The section in most common use for the upper chord, where the purlins are not placed at the panel points, is one composed of two angles and a plate as shown in (c) Fig. 96.

(a)

(b)

(c)

Fig. 94.
Trusses may be fastened to the columns by means of a plate as shown in (a) Fig. 94, or by means of connection angles as shown in (b) and (c). The first method is to be preferred on account of the rigidity of the connection, and the ease with which the field connection can be made.


Fig. 95. Detail shop plans for a roof truss.

Trusses supported directly on masonry walls have one end supported on sliding plates for spans up to about 70 feet; for greater lengths of span one end should be placed on rollers, or should be hung on a rocker. Trusses for mill buildings should be made with riveted rather than with pin connections, on account of the greater rigidity of the riveted structure. The complete shop drawings of a truss for the machine shop at the University of Illinois, are shown in Fig. 95. This truss is more completely detailed than is customary in most bridge shops. The practice in many shops is to sketch the truss, giving main dimensions, number of rivets and lengths of members, depending on the


Fig. 96.
templet maker for the rest. In Fig. 95 the rivet gage lines are taken as the center lines. This is the most common practice, although many use one leg of the angle as the center line in secondary members. The latter method has the advantage of reducing the length of connection plates without introducing secondary stresses that are liable to be troublesome.

The detail drawings of a transverse bent are shown in Fig. 96. The common methods of attaching purlins and girts, and of making lateral connections are also shown. The fan type of Fink Truss shown in Fig. 96 is quite commonly used where an odd number of panels is desired, and makes a very satisfactory design. The details of the end connection of a $60-\mathrm{ft}$. span truss are shown in (a), and of a $45-\mathrm{ft}$. span truss with a reinforced top chord are shown in (c), Fig. 96. The method of reinforcing the top chord shown (c) is the one most commonly employed where purlins are not placed at the panel points. The method of making lateral connections for the lateral rods shown in (c) is not good, for the reason that it brings bending stresses in a plate which is already badly cut up.

The detail drawings of a saw tooth roof bent for the Mathiessen \& Hegeler Zinc Works, LaSalle, Ill., are shown in Fig. 97. This building was erected in 1899 along the lines suggested by an experience with a similar saw tooth roof building erected in 1874 . The building was designed by Mr. August Ziesing, Vice President American Bridge Co., and was erected by the American Bridge Co.

The following description is from a personal letter from Mr. Julius Hegeler of the firm of Mathiessen \& Hegeler, to the author in reply to a request for plans: "The cast iron gutters are fastened to the purlins and roof boards by spikes through holes in the gutters (holes are not shown in the drawing) ; on account of their slope, however, hardly any fastening is necessary. These gutters are so placed that the galvanized iron down spouts are next to the posts, there being two down spouts at each post. The condensation gutters are fastened to the gutters and empty into the down spouts. Ice has never caused any trouble by forming in the gutters."


Fig. 97. Cross-section of the shops of the Mathiessen \& Hegeler Zinc Works, LaSalle, Ill.

The original saw tooth roof shop built by this firm in 1874 is still in use, and is one of the first, if not the first, saw tooth roofs built in America.

COLUMNS.-The common forms of columns used in mill buildings are shown in Fig. 98. For side columns where the loads are not excessive, column (g) composed of four angles laced is probably the best. In this column a large radius of gyration about an axis at right angles to the direction of the wind is obtained with a small amount
of metal. The lacing should be designed to take the shear, and should be replaced by a plate, (f) Fig. 98, where the shear is excessive, or where the bending moment developed at the base of the column requires the use of excessive flanges. The I beam column (h) makes a good side column where proper connections are made, and is commonly used for end columns (see Fig. 81). The best corner column is made of an equal legged angle with 4,5 or 6 -in. legs, (i) Fig. 98. Details for the bases of the three columns above described are shown in Fig. 99.


Fig. 98. Types of mill building columns.

Columns made of two channels laced, or two channels and two plates, are used where moderately heavy loads are to be carried. Channel column (a), with channels turned back to back and laced, is the form most commonly used; column (b), with the backs of the channels turned out and laced, gives a better chance to make connections and can be made to enter an opening without chipping the legs of the channel; column (c) is a closed section and is seldom used on that account. The cost of the shop work on column (b) was formerly considerably more than for column (a), for the reason that it was impossible to use a power riveter for driving all the rivets. A pneumatic riveter is now. made, however, that will drive all the rivets in column (b), and the shop cost for columns (a) and (b) are practically the same.

Where very heavy loads are to be carried, columns (d) or (e) are often used. Column (d), composed of two channels and one I beam, is a very economical column and is quite often used as a substitute for the $Z$-bar column shown in (e), for the reason that it can be built up out of the material that is in stock or that can be easily obtained. Connections for beams are easily and effectively made with either columns (d) or (e). The special I beam column ( j ), with flanges equal to the depth of the beam, is now being rolled in Germany by the use of a process patented by an American, Mr. Henry Grey. This column makes an almost ideal column for heavy loads, since it has all the advantages of the $Z$-bar column with a very much smaller shop cost. The Larimer column ( k ) is a patented column manufactured by Jones \& Laughlins, and is used by their patrons quite extensively. The Gray column(1) is a patented column and is but little used. Columns made of four angles box-laced, are used where extremely light loads are carried by very long columns. The shop cost of column (m) is somewhat less than that of column ( n ), although with small angles there is no difficulty in riveting ( n ) with a machine riveter. Column ( o ) is a very poorly designed column, for the reason that the radius of gyration is very small for the area of a cross-section of the column. Columns made of two angles "starred" and fastened at intervals of two or three
feet by means of batten plates, are quite frequently used for light loads. Column Details.-The details of a 4 -angle laced column attached to a truss are shown in Fig. 96 ; and the details of a 4 -angle plate column are shown in Fig. 97. The details of bases for 4 -angle, I beam and angle columns are shown in Fig. 99.


Fig. 99.

Shop details of a 4-angle column are shown in Fig. 100. This column was designed for a mill building with a span of 60 feet, trusses spaced 16 feet apart. The long legs of the angles are placed out, to give a larger radius of gyration about an axis at right angles to the direction of the wind. The details of a 4 -angle and plate column, designed to carry a crane girder as well as the roof, are shown in Fig. Ior.

The details of a heavy column composed of two channels placed back to back and laced, are shown in Fig. 102; the lacing is heavy and is well riveted. The bent plate connections for the anchor bolts on this column are very satisfactory. This is one of the columns used in the A. T. \& S. F. R. R. shops at Topeka, Kas., to carry the crane girders.

The shop details of a light channel column are shown in Fig. Io3. The single lacing alternates on the two sides of the column. The various details of the columns can be seen, and require no explanation.



FIg. 102.
Fig. 103.


Fig. ioza.
Fig. 103b.

Details of columns designed to carry crane girders are shown in Figs. 103a, 103b, 103c, and 103d, which have been taken from the Engineering Record.


Fig. roze.


Fig. Io3d.

The American Bridge Company's specifications for lattice bars for single and double lacing are shown in Fig. Io4.

Maximum Distance $\boldsymbol{c}$ for given thickness of bar.

| Single lacing $\boldsymbol{t}-\frac{c}{40}$ |  | double lacing $t-\frac{c}{c o}$ |  |
| :---: | :---: | :---: | :---: |
| THICK. |  | ${ }_{\text {distance }}^{\text {de }}$ | ${ }_{\text {THICK. }}^{\substack{\text { tict. }}}$ |
| 4 | 0.10 | 1 - 3 | $\frac{1}{4}$ |
| $\frac{5}{16}$ | 1- 0 \% | 1-63 | $\frac{\frac{3}{16}}{}$ |
| $\frac{3}{8}$ | 1-3 | 1-101 | $\frac{3}{8}$ |
| $\frac{7}{10}$ | 1-5 ${ }^{\frac{1}{8}}$ | 2-2! | $\frac{7}{18}$ |
| $\frac{1}{2}$ | 1-8 | 2-6 | $\frac{1}{2}$ |
| $\frac{9}{18}$ | 1-10t | 2-92 | $\frac{9}{18}$ |
| $\frac{8}{8}$ | 2-1 | 3-1古 | $\frac{5}{8}$ |



Fig. 104.
Single lacing should make an angle of not less than 60 degrees, and double lacing, riveted at the center, not less than 45 degrees with the axis of the member. These specifications are standard.

The properties of angles, I beams and channels, and of Z-bar, Larimer and Gray columns are given in the manufacturers handbooks. The moment of inertia of two channels placed back to back and laced, as in (a) or (b) Fig. 98, about an axis parallel to the webs and through the center of gravity of the section, is given by the formula

$$
I=2 I^{\prime}+2 A d^{2}
$$

where $I^{\prime}=$ moment of inertia of one channel about an axis through its center of gravity and parallel to the given axis, $A=$ the area of one channel, and $d=$ distance from the center of gravity of one channel to the center of gravity of the column. The lacing is omitted in finding the moment of inertia and the area of the section. The moment of inertia of the column about an axis perpendicular to the webs is equal
to twice the moment of inertia of one channel, which may be found in the table of properties of channels given in the handbooks.

Having the moment of inertia $I$, the radius of gyration of the column is given by the formula

$$
r=\sqrt{ } \frac{I}{A}
$$

With channels placed back to back and laced, the radii of gyration about the two axes are equal when the clear distance is equal to about 3 inches for $5-\mathrm{in}$. channels, and 10 inches for $15-\mathrm{in}$. channels. A common rule is to space the channels about eight-tenths the depth. With channels placed with backs out and laced, the radii of gyration about the two axes are equal when the clear distance is about equal to 5 inches for $5-\mathrm{in}$. channels, and 13 inches for $15-\mathrm{in}$. channels (see Cambria Steel, 1903 Edition, p. 217).

The moment of inertia of a 4 -angle laced column, about an axis perpendicular to the lacing and through the center of the post, is given by the formula

$$
I=4 I^{\prime}+4 A d^{2}
$$

where $I^{\prime}=$ moment of inertia of one angle about an axis through its center of gravity and parallel to the given axis, $A=$ the area of one angle and $d=$ the distance from the center of gravity of the separate angles to the center of gravity of the column. The moment of inertia about the other axis is found in a similar manner.

STRUTS AND BRACING.-Eave struts are very commonly made of four angles laced, made in the same way as the 4 -angle posts, Fig. 100. Eave struts made of single channels are more economical, and are equally as good as the laced struts for most cases. End rafters are commonly made of channels. The sides, ends, upper and lower chords are commonly braced as shown in Fig. 81. The bracing in the plane of the lower chords should preferably be made of members capable of taking compression as well as tension. The diagonal bracing in the plane of sides, ends, and upper chords is commonly composed of rods. Initial tension should always be thrown into diagonal rods by
screwing up the turnbuckles or adjustable ends. Stiff bracing should be made short, and should be brought into position for riveting by using drift pins; to accomplish this there should be not less than three rivet holes in each lateral connection. A connection for lateral rods to the chords of trusses is shown in Fig. 105.


Lateral Connection
Fig. 105.
Cast lateral lugs for connecting lateral rods to the webs of I beams and to heavy plates are shown in (a) and (b), Fig. 106.


Cast Lateral Lug (a)


Cast Lateral Lug
(b)

Fig. Іоб.
Where rod bracing in the ends and sides of buildings interferes with windows and doors, or where the building is to be left open, portal bracing is used. In the latter case the bents are usually braced in pairs,
although the portal bracing is sometimes made continuous. Stiff bracing is often placed between the trusses in the plane of the center of the building and materially stiffens the structure (see Fig. 175).

PURLINS AND GIRTS.-Purlins are made of channels, angles, Z-bars and I beams, Fig. III, where simple shapes are used. Channel and angle purlins should be fastened by means of angle lugs as shown in Fig. 107. I beam purlins are very often fastened as shown in the A. T. \& S. F. R. R. shops, Fig. 175. Z-bar purlins are bolted directly to the upper chords of the trusses. The channel purlin is the most economical, and the I beam purlin is the most rigid. Girts are made of channels, angles, and Z-bars, and are fastened as shown in Fig. iII. Where the distance between trusses is more than 15 or 16 feet the purlins and girts should be kept from sagging by running $3 / 8$ or $1 / 2$-inch rods through the centers to act as sag rods, the ends of the rods being fastened to the eaves and ridge (see Fig. 81).


Purlin Clip
Fig. 107.
Where the columns and trusses are placed so far apart that the use of simple rolled shapes is no longer economical, purlins and girts are trussed.

DESIGN OF PARTS OF THE STRUCTURE.-The methods of determining the sizes of the various members in a mill building will be illustrated by a few examples. For a more detailed treatment of this subject, see "Modern Framed Structures" by Johnson, Bryan and Turneaure ; "Roofs and Bridges" by Merriman and Jacoby; and other standard works on bridge design.

Manufacturers of structural material issue handbooks which con-
tain tables that give weights, areas of sections, positions of centers of gravity, moments of inertia, radii of gyration, etc., for the shapes manufactured by the different companies. Tables are also given for the resisting moments on pins, the shearing and bearing values of rivets, standard bolts, eye-bars, bridge pins, standard connection angles, bearing plates, minimum size of rivets, spacing of rivets, and many other useful tables. The handbooks best known are as follows, the popular name being given in brackets: Cambria Steel (Cambria), issued by the Cambria Steel Company, Johnstown, Pa.; Pocket Companion (Carnegie), issued by the Carnegie Steel Company, Pittsburg, Pa. : Standard Steel Construction (Jones \& Laughlins), issued by Jones \& Laughlins, Limited, Pittsburg, Pa. ; Steel in Construction (Pencoyd), issued by A. and P. Roberts Company, Philadelphia ; and Structural Steel and Iron (Passaic), issued by the Passaic Rolling Mill Company, Paterson, N. J. These books can be obtained for from 50 cts. to $\$ 2.00$. The American Bridge Company issued, in 1901, a book entitled Standards for Structural Details, for use at its various plants.

The Carnegie handbook was formerly very generally used in designing offices, but recently the supply has been limited so that the Cambria handbook has taken its place in schools and in many offices, and for this reason references will be made to Cambria in obtaining weights, properties of sections, etc. All references to Cambria will be to the 1903 edition.

Design of Trusses.-The method of determining the proper sizes of the truss members will be illustrated by designing a few of the members of the truss in the transverse bent of the mill building shown in Fig. 53 ; the stresses in which are given in Table VI. The secondary members will be omitted from the truss in the design, as they were in obtaining the stresses.

The material will be assumed to be medium steel and the allowable stresses as given in Appendix I, will be taken. The allowable stresses are as follows:

> Tension . . . . . . . . . . . . . . . $16,000 \mathrm{lbs}$. per sq. in.
> Compression. . . . . . . . . $16,000-70 l \div r$ lbs. per sq. in.
where $l=$ the length of the member in inches, and $r=$ radius of gyration of member in inches.

Rivets and Pins, bearing. . . . . . . . . . . . . . . . . . . . . 22,000 lbs. per sq. in.
Rivets and Pins, shear.................................,000 " " " "
Pins, bending on extreme fibre.................. 24,000 " " " "
Plate Girder webs, shear on net section..........io,000 " " " "

## Compression Members.

Piece $x$-2. $\quad$ Maximum stress $=+34,300$ lbs.
The upper chord will be made of two angles with unequal legs placed back to back, with the shorter legs turned out, and separated by $3 / 3$-inch gusset or connection plates.

Try two $4^{\prime \prime} \times 3^{\prime \prime} \times 5-16^{\prime \prime}$ angles. From table on page 187 Cambria, the least radius of gyration, $r$, is 1.27 inches. The unsupported length of the member is 8.5 feet, and $l \div r=102 \div \mathrm{I} .27=80$. The allowable stress per square inch $=16,000-70 l \div r=16,000-5,600=$ $10,400 \mathrm{lbs}$. The area required will be $34,300 \div 10,400=3.3 \mathrm{sq}$. in. The combined area of the two angles is 4.18 sq. ins. (page 170 Cambria), which is somewhat large.

Try two $3^{1 / 2 \prime} \times 3^{\prime \prime} \times 5-16^{\prime \prime}$ angles. From the table on page 186 Cambria, $r=1$. Io inches; then $l \div r=93$, and allowable stress is $16,000-70 \times 93=9,490 \mathrm{lbs}$. per sq. in. Required area $=3.62 \mathrm{sq} . \mathrm{in}$. The area of the two angles is 3.88 sq . in., so the section is sufficient.

To make the two angles act together as one piece it is necessary to rivet them together at intervals, such that the two angles acting singly will be stronger than the two angles acting together. On page 170 Cambria, the least radius of gyration of a $3^{1 / 2 \prime \prime} \times 3^{\prime \prime} \times 5-16^{\prime \prime}$ angle about a diagonal axis is 0.63 inches. The angles must therefore be riveted at least every $0.63 \times 93=58.6$ inches. It is the common practice to rivet angles in compression about every $21 / 2$ to 3 feet.

The truss will be shipped in two parts and in order to avoid a splice, and because the difference in the stresses is small, the entire top chord will be made of two $3^{1 / 2 \prime} \times 3^{\prime \prime} \times 5-16^{\prime \prime}$ angles.

## Tension Members.

Member 1-2. Maximum stress $=-24,900 \mathrm{lbs}$.
The net area required is $24,900 \div 16,000=1.56 \mathrm{sq}$. in. The gross area of the section must be such, that there will be a net area of not less than 1.56 sq . in. after the area of the rivet holes in any section has been deducted.

Try two $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles. It will be necessary to deduct the area of one rivet hole from each angle. The diameter of the rivet hole deducted is taken $1 / 8$ inch larger than the diameter of the rivet before driving. Assuming the rivets as $5 / 8$ inch, it will be necessary to deduct o. 19 sq. in. from each angle (page 3 Io Cambria). The net area of two $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles is $2.88-0.38=2.50 \mathrm{sq}$. in. The section is somewhat large, but will be used, for the reason that angles much smaller than these will be deficient in rigidity.

The angles will be riveted together about every 3 feet to make them act as one member.

Member 5-6. $\quad$ Maximum stress $=-5,000 \mathrm{lbs}$.
The net area required is $5,000 \div 16,000=0.32$ sq. in. The gross area of the section must be such that there will be a net area of at least 0.32 sq . in. after the area of the rivet holes in any section has been deducted.

Try two $2^{\prime \prime} \times 2^{\prime \prime} \times 14^{\prime \prime}$ angles - the minimum angles that can be used under the specifications. Deducting the area of one rivet the net area is $\mathrm{I} .88-0.38=1.50$ sq. in. The section appears to be excessively large and one $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ angle will be tried. Where angles in tension are fastened by one leg the specifications require that (paragraph 35 ) only one leg shall be counted as effective, or the eccentric stress shall be calculated. The net area of the one $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ angle when fastened by one leg, will then be $1 / 20.94-0.19=0.28$ sq. ins., which is insufficient. One $2^{1} / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ angle will have a net area of 0.40 sq. in., which will be sufficient. However, since it is preferable to make tension members of symmetrical sections, the member will be made of two $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles.

Alternate Tension and Compression.-Where members are subject to alternate tension and compression the specifications require that they be designed to take each kind of stress, (paragraph 32).

Member 4-y. Maximum stresses $=(-21,300$ and $+2600 \mathrm{lbs})$.
Try two $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles - the same as member I-2. The net area required for tension is $21,300 \div 16,000=1.34$ sq. in.

The net area of two $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles is $2.88-0.3^{8}=2.50$ sq. in. which is ample for tension.

The least radius of gyration is $r=0.93$ inches (page 185 Cambria). Length $=108$ inches, and $l \div r=117$. The allowable stress per square inch $=16,000-70 \times 117=8,8 \mathrm{Io} \mathrm{lbs}$. Required area $=$ 0.30 sq. in. The section appears to be large, but it can not be made much smaller without exceeding the maximum limit of 125 for $l \div r$. Two $3^{\prime \prime} \times 21 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles will be found by a similar calculation to be sufficiently large, and will be used.

Member 3-4. Maximum stresses $=(-10,900$ and $+13,600 \mathrm{lbs})$.
Try two $2^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles. The area required to take the tension is $10,900 \div 16,000=0.69 \mathrm{sq}$. in. The net area of the two angles is $1.88-0.38=1.50 \mathrm{sq}$ in., which is ample for tension. The least radius of gyration is $r=0.6 \mathrm{I}$ inches (page 185 Cambria). The length is 108 inches, and $l \div r=177$. This is greater than the maximum allowed of 125 , and a larger section must be used.

Try two $3^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ angles, with short legs out. In this case $!\div r$ equals $108 \div 0.89=120$. The allowable stress per sq. in. is $16,000-70 \times 120=7,600 \mathrm{lbs}$. The required area for compression is $13,000 \div 7,600=1.79 \mathrm{sq} . \mathrm{in}$. The area of the two angles is 2.38 sq. in., which is ample. The section is sufficiently large to take both tension and compression, and will be used.

Design of Columns.-Columns must be designed to take the stress due to direct loading, to eccentric loading, and to wind moment. The method of column design will be illustrated by the design of the leeward column in the transverse bent shown in Fig. 56; the stresses for which are given in Table VI.

Direct stress in $A-17=14,900$ lbs.; and bending moment $=$ 924,000 inch-lbs. A 4 -angle laced column will be used.

Try four $4^{\prime \prime} \times 3^{\prime \prime} \times 5-16^{\prime \prime}$ angles, long legs out, and a depth of $18^{\prime \prime}$ out to out of angles; $3 / 8^{\prime \prime}$ lacing and connection plates will be used.

The radius of gyration of two $4^{\prime \prime} \times 3^{\prime \prime} \times 5-16^{\prime \prime}$ angles with the long legs out, is found on page 189 Cambria to be 1.93 inches.

The moment of inertia of a section of the post about the shorter axis is

$$
\begin{aligned}
I & =4 I^{\prime}+4 A d^{2} \\
& =4 \times \mathrm{I} .65+4 \times 2.09(9.00-0.76)^{2} \\
& =574.24
\end{aligned}
$$

and the radius of gyration is

$$
r=\sqrt{\frac{574.24}{8.36}}=8.3 \text { inches. }
$$

The maximum fibre stress will occur on the windward side of the post and will be found by substituting in formula (30a) to be

$$
\begin{aligned}
& f=f_{2}+f_{1}=\frac{14,900}{8.36}+\frac{924,000 \times 9}{574.24-\frac{14,900 \times 240^{2}}{280,000,000}} \\
& =1780+14,560=16,340 \mathrm{lbs} . \text { per square inch. }
\end{aligned}
$$

The allowable stress per square inch for direct loads is $16,000-$ $70 l \div r=16,000-70 \times 29=14,000 \mathrm{lbs}$. ; and since the wind moment comes only occasionally we will increase the allowable stress for direct loads by 25 per cent when wind loads are considered, making an allowable stress of $14,000 \times 1.25=17,500 \mathrm{lbs}$. per square inch. The section chosen is therefore sufficiently large.

The direct load will have to be carried by the column, and it will be necessary to investigate the column about its longer axis. For this case $l \div r=240 \div \mathrm{I} .93=125$, which is allowable under the specifications, and the section is ample.

The lacing will be designed to take the shear, which is $5,500 \mathrm{lbs}$. below and $\mathrm{I} 2,800 \mathrm{lbs}$. above the foot of the knee brace. The maximum stress in the lacing will be $12,800 \times \sec 30^{\circ}=14,700 \mathrm{lbs}$. The allowable tensile stress per square inch will be $16,000 \times 1.25=20,000$

## TABLE XI.

Rivet spacing in angles.

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Leg. <br> Inches. | $\begin{gathered} G \\ \text { Inches. } \end{gathered}$ | Max. <br> Rivets. <br> Inches. | Leg. <br> Inches. | $G_{1}$ <br> Inches. | $G_{2}$ Inches: | Max. Rivets. Inches. |
| 8 7 6 5 | $\begin{aligned} & 41 / 2 \\ & 4 \\ & 31 / 2 \\ & 3 \end{aligned}$ | $7 / 8$ " " | 8 7 6 5 | 3 $21 / 2$ $21 / 4$ 2 | 3 <br> 3 <br> 3 <br> $21 / 2$ <br> $13 / 4$ | $\begin{array}{r}7 / 8 \\ \hline 1 \\ \hline 1\end{array}$ |
| 3112 | $\begin{aligned} & 214 \\ & 1 \\ & 1 \end{aligned}$ | " |  | $6^{\prime \prime}$ An | Excee |  |
| $\begin{aligned} & 21 / 2 \\ & 21 / 2 \\ & 11 / 2 \end{aligned}$ | $\begin{array}{r} 1 \% 4 \\ 13 / 8 \\ 118 \\ 7 / 8 \end{array}$ | $\begin{aligned} & 3 / 4 \\ & 5 / 8 \\ & \frac{5}{8} \end{aligned}$ | 6 | 21/2 | 214 | 7/8 |

TABLE XII.
Maximum size of rivets in beams, channels, and angles.

| I-BEAMS. |  |  |  |  |  | CHANNELS. |  |  | ANGLES. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { oeqz. } \\ & \text { Insw's. } \end{aligned}$ | Waigh ${ }^{\mathrm{p}} \mathrm{peO}$ Pounds. | $\left\lvert\, \begin{gathered} \text { Size } \\ \text { of } \\ \text { Rivet. } \\ \text { Ioches. } \end{gathered}\right.$ | $\begin{gathered} \text { Depth } \\ \text { of } \\ \text { Boam. } \\ \text { In ches. } \end{gathered}$ | Weight per Pounds. | Size Rizet. Inches. | $\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Onansel } \\ & \text { Incheza. } \end{aligned}$ | $\begin{aligned} & \text { Weight } \\ & \text { peot } \\ & \text { Foot. } \\ & \text { Pounds. } \end{aligned}$ | $\begin{gathered} \text { Sire } \\ \text { of } \\ \text { Rivet. } \\ \text { Inches. } \end{gathered}$ | Length of Leg. Inohes. | Size of Rivet. Inchas. | $\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Leg. } \\ & \text { Ineces. } \end{aligned}$ |  |
| 3 | 5.5 | $3 / 8$ | 15 | 42.0 | $3 / 4$ | 3 | 4.0 | 3/8 | 3/4 | 1/4 | $21 / 2$ | $3 / 4$ |
| 4 | 7.5 | 1/2 | 15 | 60.0 | 3/4 | 4 | 5.25 | 1/2 | 1 | $3 / 8$ | $23 / 4$ | $7 / 8$ |
| 5 | 9.75 | 1/2 | 15 | 80.0 | 7/8 | 5 | 6.5 | 1/2 | $11 / 4$ | 1/2 | 3 |  |
| 6 | 12.25 | 58 | 18 | 55.0 | 7/8 | 6 | 8.0 | 5/8 | $1 \frac{5}{16}$ | 1/2 | $31 / 2$ | 1 |
| 7 | 15.0 | 5/8 | 20 | 65.0 |  | 7 | 9.75 | 5/8 | $13 / 8$ | 1/2 | 4 | 1 |
| 8 | 18.0 | $3 / 4$ | 20 | 80.0 | 1 | 8 | 11.25 | $3 / 4$ | $11 / 2$ | 1/2 | $41 / 2$ | 1 |
| 9 | 21.0 | $3 / 4$ | 24 | 80.0 | 1 | 9 | 13.25 | 3/4 | $13 / 4$ | 5/8 | 5 | 1 |
| 10 | 25.0 | $3 / 4$ |  |  |  | 10 | 15.0 | 3/4 | 2 | 58 | 6 | 1 |
| 12 | 31.5 | $3 / 4$ |  |  |  | 12 | 20.50 | $3 / 4$ | 21/4 | $3 / 4$ | 7 | 1 |
| 12 | 40.0 | $3 / 4$ |  |  |  | 15 | 33.0 | 3/4 | $21_{1} \frac{5}{6}$ | 3/4 |  |  |

## TABLE XIII.

Rivet spacing.

| Sizeof Rivet. Inches. | Minimam <br> Pitoh. <br> Inches. | Maximum Pitch at Ends of Compression Members. Inches. | Minimum Pitch in Flanges of Chords and Gird's. Inches. | Distance from Edge of Plece to Center of Rivet Hole. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | yinimum. Inches. | Usual. Inobes. |
| 1/4 | $3 / 4$ | .... | - . |  | .... |
| 3/8 | $11 / 8$ | . . . | .... | . . . | ... |
| $1 / 2$ | 11/2 |  | . . . |  |  |
| 5/8 | 17/8 | $21 / 2$ | 4 | $1 \frac{15}{6}$ | 11/4 |
| $3 / 4$ | $21 / 4$ | 3 | 4 | 11/8 | 11/2 |
| 7/8 | 25/8 | $31 / 2$ | 4 | $\mathrm{I}_{16}^{5}$ | 13/4 |
| 1 | 3 | 4 | 4 | $11 / 2$ | 2 |

## TABLE XIV.

Shearing and bearing value of rivets in pounds.

| Diameter of Rivet Inches |  | AreainSquareInches. | $\begin{array}{\|c} \text { Single } \\ \text { Shear } \\ \text { at } 11000 \\ \text { Lbs. } \end{array}$ | Bearing Value for Different Thicknesses of Plate in Inches, at 22,000 Pounds per Square Inch. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \mathrm{rac}- \\ & . \text { tion } \\ & \hline \text { tion } \end{aligned}$ | $\begin{aligned} & \text { Deci- } \\ & \text { mal } \end{aligned}$ |  |  | 1/4 | $\frac{5}{16}$ | 3/8 | $\frac{7}{16}$ | 1/2 | $\frac{9}{16}$ | 5/8 | ${ }_{1}^{11}$ | $3 / 4$ |
| 3/8 | . 375 | . 1104 | 1210 | 2060 | 2580 | 3090 |  |  |  |  |  |  |
| 1/2 | . 500 | . 1963 | 2160 | 2750 | 3440 | 4130 | 4820 | 5500 |  |  |  |  |
| 588 | . 625 | . 3068 | 3370 | 3440 | 4300 | 5160 | 6020 | 6880 | 7740 | 8600 |  |  |
| $34^{\prime}$ | . 750 | . 44418 | 4860 | 4130 | 5160 | 6190 | 7220 | 8250 | 9280 | 10320 | 11340 | 12380 |
| 7/8 | . 875 | . 6013 | 6610 | 4810 | 6020 | 7220 | 8430 | 9630 | 10840 | 12040 | 13240 | 14440 |
| 1 | 1.00 | . 7854 | 8640 | 5500 | 6880 | 8250 | 9630 | 11000 | 12380 | 13750 | 15130 | 16500 |

All bearing values above or to right of upper zizgag lines are greater than double shear.
Values below or to left of lower zigzag lines are less tban single shear.
lbs. The required net area for tension will be $14,700 \div 20,000=0.74$ square inches. The gross area of a $3^{\prime \prime} \times 3 / 8^{\prime \prime}$ bar is 1 . I25 square inches (page 388 Cambria) and the net area after deducting for one $3 / 4^{\prime \prime}$ rivet is 0.795 square inches (page 310 Cambria) which is sufficient for tension.

The allowable stress for compression is ( $16,000-70 l \div r$ ) 1.25 . The moment of inertia of a $3^{\prime \prime} \times 3 / 8^{\prime \prime}$ bar is 0.0135 , and the radius of gyration is 0.11 inches. The ends of the lacing bars are practically fixed, and it will be assumed that the length c . to c . of rivets will as a result be shortened by one-half. Then $l \div r=75$, the allowable stress will be $13,340 \mathrm{lbs}$. and the required area I . 10 square inches. The lacing bars are therefore sufficient to take either the tension or compression. Lacing bars $21 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$ will be found sufficient below the foot of the knee brace.

The allowable shear on each rivet in the lacing will be (Table XIV) $4860 \times \mathrm{I} .25=6,075 \mathrm{lbs} . ;$ and the allowable bearing will be $6,190 \times$ $\mathrm{I} .25=7,740 \mathrm{lbs}$. The stress in the lacing bars below the foot of the knee brace is $5,500 \times \sec 30^{\circ}=6,300 \mathrm{lbs}$; the $3 / 4$-rivets are all right for bearing but are not quite large enough for shear, however it is so near, that they will be used. Above the foot of the knee brace it will be necessary to increase the thickness of the lacing bars and put two rivets in each connection as shown in Fig. 102, or use a solid plate.

In designing the bases of columns hinged at the base, part of the stresses may be assumed to pass directly to the base plate if the abutting surfaces have been milled; but in columns fixed at the base all of the stresses must be transferred by the rivets. The rivets must be designed to take the direct stress and the stress due to bending moment ; the solution is similar to that for anchorage (Fig. 6I) and will not be given.

Design of Plate Girders.-The maximum moments and shears are found as described in Chapter X . If the plate girder were designed by means of its moment of inertia, as in the case of rolled sections, about $1 / 6$ of the web would be effective as flange area to take the bending moment; or deducting rivets about $1 / 8$ would be found effective. It is, however, the common practice to assume that all the moment is taken by the flanges, and that all the shear is taken by the web; and this assumption will be made in the discussion which follows.

Flange Stress.-The stress, $F$, in the flanges at any point in a plate girder is

$$
\begin{equation*}
F=M \div h \tag{80}
\end{equation*}
$$

where $M=$ bending moment in inch-pounds, and $h=$ the distance between centers of gravity of the flange areas (effective depth), (a) Fig. 108.

The net flange area, $A$, will be $A=F \div f$ where $f=$ the allowable unit stress. The tension flanges of plate girders are designed as above, and the compression flanges are made with the same gross area.


Fig. 108.

Web. -The web plate should not be less than 5-16 of an inch in thickness although $1 / 4$-inch plates may be used if provided with sufficient stiffeners. The shear in the web is commonly assumed as uniformly distributed over the entire cross-section of the plate.

Stiffeners.-There is no rational method for the design of stiffeners. If they are placed at distances apart not exceeding the depth of the girder, nor more than 5 feet, where the shearing stress is greater
than given by the formula - allowed shearing stress $=12,500-90 \mathrm{H}$, where $H=$ ratio of depth to thickness of web plate, the stiffeners will be near enough together. Where the shearing stress is less than given by the above formula, stiffeners may be omitted or spaced as desired.

Stiffeners are commonly designed as columns, free to move in a direction at right angles to the web, with an allowed stress $P=12,000-$ $55 l \div r$. Stiffeners should be provided at all points of support and under all concentrated loads, and should contain enough rivets to transfer the vertical shear.

Web Splice.-In the plain web splice shown in Fig. 108a, the rivets take a uniform shear equal to $S \div n$, where $S$ is total shear, and $n$ is number of rivets on one side of splice, and a shear due to the shearing stress not being applied at the center of gravity of the rivets. This is the problem of the eccentric riveted connection, which has been discussed in Chapter XV.

If the web is assumed to take part of the bending moment there will be an additional shear due to bending moment.

Rivets in the Flanges.-In Fig. 108, let $S=$ the shear in the girder at the given section, $h^{\prime}=$ distance between rivet lines, $p=$ the pitch of the rivets, and $r=$ the resistance of one rivet ( $r$ is usually the safe bearing on the rivet in the web).

Then taking moments about the lower right hand rivet, we have

$$
\begin{equation*}
S p=r h^{\prime}, \text { and } p=r h^{\prime} \div S \tag{81}
\end{equation*}
$$

Where the rivets are in double rows as shown in (d), the distance $h^{\prime}$ is taken as a mean of the distances for the two lines.

The crane loads produce an additional shear in the rivets, (e) Fig. 108, which will now be investigated. We will assume that the rail distributes the load over a distance of 25 inches; this distance will be less for light rails and more for heavy rails. The maximum vertical shear on one rivet will be $P p \div 25=0.04 P p$. The horizontal stress due to bending moment is $r=S p \div h^{\prime}$, and the resultant stress from the two sources will be

$$
r^{\prime}=\sqrt{(0.04 P p)^{2}+\left(\frac{S p}{h^{\prime}}\right)^{2}}
$$

and solving for $p$

$$
\begin{equation*}
p=\sqrt{\frac{r^{\prime}}{(0.04 P)^{2}+\left(\frac{S}{h^{\prime}}\right)^{2}}} \tag{82}
\end{equation*}
$$

Crane Girders.-The maximum moments and shears in crane girders are found as explained in Chapter X. For small cranes I beam girders are commonly used, and are designed by the use of their moments of inertia. Plate girders are designed as previously described. In designing both rolled and plate girders care must be used to properly support the girder laterally.


Fig. io8a.

## CHAPTER XVIII.

## Corrugated Steel.

Introduction.-Corrugated steel is made from sheet steel of standard gages, and is either galvanized at the mill or is left black. The black corrugated steel is usually painted at the mill and is always painted after erection. Paint will not adhere well to the galvanized steel until after it has weathered unless a portion of the coating is removed by the application of an acid. The common standard for the gage of sheet steel in the United States is the United States Standard Gage, and this should be used in specifying the weight and thickness. The thickness and weights per square of 100 square feet, for black and galvanized sheet and corrugated steel are given in Table XV. The weights of the corrugated steel given in the table are for standard corrugations, approximately $21 / 2$ inches wide and $5 / 8$ of an inch deep. If black sheet steel is painted, add about 2 lbs . per square.

## TABLE XV.

Weight of flat, and corrugated steel sheets with $21 / 2$-INCH CORRUGATIONS.

| Gage No. | Thicknessininches | Weight per Square ( $100 \mathrm{sq} \cdot \mathrm{ft}$.) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Flat | Sheets | Corrugated Sheets |  |
|  |  | Black | Galvanized | Black Painted | Galvanized |
| 16 | . 0625 | 250 | 266 | 275 | 291 |
| 18 | . 0500 | 200 | 216 | 220 | 236 |
| 20 | . 0375 | 150 | 166 | 165 | 182 |
| 22 | . 0313 | 125 | 141 | 138 | 154 |
| 24 | . 0250 | 100 | 116 | 111 | 127 |
| 26 | . 0188 | 75 | 91 | 84 | 99 |
| 28 | . 0156 | 63 | 79 | 69 | 86 |

Corrugated steel is also made with corrugations 5,3 and $11 / 4$ inches wide approximately. Corrugated steel with corrugations $11 / 4$
inches wide and $3 / 8$ of an inch deep is frequently used for lining buildings. Corrugated steel with $\mathrm{I} / 4$-inch corrugations weighs about 4 per cent more than steel of the same gage with $21 / 2$-inch corrugations. Corrugated sheets are commonly made from flat bessemer steel sheets, by rolling one corrugation at a time. Iron and open hearth steel corrugated sheets can be obtained, but are very hard to get and cost extra.

The standard sheets of corrugated steel with $21 / 2$-inch corrugations, are 28 inches wide before, and 26 inches wide after corrugating, and will cover a width of 24 inches with one corrugation side lap, and approximately $21 \mathrm{I} / 2$ inches with two corrugations side lap, (c) and (a) Fig. 109. Special corrugated steel can usually be obtained that will cover a width of 24 inches with $\mathrm{I} / 2$ corrugations side lap, (b). Corrugated steel should be laid with 6 inches end lap on the roof and 4 inches end lap on the sides of buildings.


FIG. IO9.

Stock lengths of corrugated steel sheets can be obtained from 5 to io feet, varying by one-half foot. Sheets of any length between 4 and io feet can usually be obtained directly from the mill without extra charge. Sheets from 48 to 5 inches long, cost from I-IO to $1 / 2$ cents per pound extra. Sheets from 10 to 12 feet long are very hard to obtain and cost extra. Sheets cannot be obtained longer than 12 feet. Stock lengths of sheets should be used whenever possible as odd lengths often delay the filling of the order. Bevel sheets should preferably be ordered in multiple lengths and should be cut in the field. Sheets to fit around windows and doors should be cut in the field; no part of a sheet less than $1 / 4$ the width of a full sheet should ever be used.


Fig. ifo.
For cutting and splitting corrugated sheets in the field the rotary shear shown in Fig. IIo is invaluable. It will make square or bevel cuts, or will split sheets without denting the corrugations. The shear shown in Fig. IIo is one made by the Gillette-Herzog Mfg. Co., Minneapolis, Minn., and was used by the author in the erection of a steel stamp mill in Northern Michigan, while in the employ of the above named company. The shear is not on the market, but can be made in any ordinary machine shop at a comparatively small cost.

Fastening Corrugated Steel.-Where spiking strips are used, the corrugated steel is fastened with 8 d barbed roofing nails $3 / 4$ to $21 / 2$ inches long, spaced 6 to 8 inches apart. The $21 / 2$-inch barbed nails should be used for nailing to spiking strips and to sheathing whenever possible. For weight of barbed roofing nails see Table XVI.

## TABLE XVI.

Number of barbed roofing nails in one pound.

| Size | $\underbrace{}_{\substack{\text { Length } \\ \text { inches }}}$ | $\stackrel{\text { Gage }}{\text { No. }}$ |  | Size | $\underbrace{\substack{\text { a }}}_{\substack{\text { Length } \\ \text { inches }}}$ | Gage | ${ }_{\text {Nose }}^{\text {No. in }}$ in. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 d | $11 / 2$ | 13 | 339 | 20 d | 4 | 6 | 30 |
| 6d | 2 | 12 | 205 | 30d | $41 / 2$ | 5 | 23 |
| 8 d | $21 / 2$ | 10 | 96 | 40d | 5 | 4 | 17 |
| 10d | 3 | 9 | 63 | 50d | $51 / 2$ | 3 | 13 |
| 12 d | $31 / 2$ | 8 | 52 | 60d | 6 | 2. | 10 |
| 16 d | $31 / 2$ | 7 | 38 |  |  |  |  |

The common methods of fastening corrugated steel directly to the purlins and girts are shown in Fig. rir. Nailing pieces should preferably be used where anti-condensation roofing, Fig. 127, is used, or where the sides are lined with corrugated steel. The clinch nail is prob-


Fig. ili. Methods of fastening corrúugated steel to purlins and girts.
ably the most satisfactory fastening for the usual conditions. The side laps are fastened together by means of copper or galvanized iron clos-
ing rivets, spaced about 8 to 12 inches apart on the roof and about 2 feet apart on the sides.

Clinch nails are made of $1 / 8$ inch or No. Io soft iron wire and are clinched around the purlin. The usual sizes and weights of clinch nails for different lengths of angle and channel purlins are given in Fig. III. Care should be used in punching the holes in the corrugated steel for clinch nails and rivets to get them in the top of the corrugations and to avoid making the hole unnecessarily large. Clinch nails are spaced from 8 to 12 inches apart. Two clinch nails are usually furnished for each lineal foot of purlin and girt.

Straps are made of No. 18 gage steel, $3 / 4$ inches wide, and are
TABLE XVII.
Number of copper rivets in one pound.

| Diam. | Length of Rivets in inches. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gage <br> No. | B | 1/4 | $\frac{5}{16}$ | 3/8 | $\frac{7}{16}$ | 1/8 | $\frac{9}{16}$ | 5/8 | 3/4 | 7/8 | 1 | 11/8 | 11/4 | 1/28 |
| 3 | 70 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 78 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 85 |  |  |  |  | 64 | 60 | 53 | 48 | 46 | 44 | 39 | 36 | 32 |
| 6 | 180 |  |  | 105 | 100 | 96 | 90 | 74 | 68 | 61 | 56 | 54 | 50 | 46 |
| 7 | 368 | 211 | 180 | 171 | 160 | 150 | 140 | 132 | 110 | 97 | 91 | 79 | 72 | 63 |
| 8 | 417 | 266 | 248 | 227 | 200 | 172 | 157 | 147 | 136 | 116 | 100 | 93 | 88 | 71 |
| 9 | 600 | 365 | 336 | 261 | 248 | 228 | 220 | 184 | 169 | 156 | 133 | 124 | 113 | 99 |
| 10 | 820 | 411 | 376 | 336 | 305 | 257 | 249 | 223 | 206 | 180 | 162 |  |  |  |
| 11 | 944 | 416 | 400 | 360 | 338 | 320 |  |  |  |  |  |  |  |  |
| 12 | 1167 | 545 | 475 | 400 | 342 | 325 | 308 | 292 | 20.7 | 221 | 190 |  |  |  |
| 13 | 1442 | 799 | 640 | 547 | 502 | 448 | 400 | 392 | 316 |  |  |  |  |  |
| 14 | 1620 | 1040 | 995 | 816 | 784 | 616 | 550 | 528 |  |  |  |  |  |  |
| 15 | 3512 |  |  |  |  |  |  |  |  |  |  |  |  |  |

fastened with two 3 -16-inch stove bolts $3 / 8$ inches long. Straps are spaced 8 to 12 inches apart. One strap and two bolts are usually furnished for each lineal foot of purlin and girt. One bundle of hoop steel for making straps contains 400 lineal feet and weighs 50 lbs .

Clips are made of No. 16 gage steel, $11 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$, and are fastened with two 3 -16-inch stove bolts $1 / 2$ inches long. Clips are spaced from 8 to 12 inches apart. One clip and two bolts are usually furnished for each lineal foot of purlin and girt.

Copper rivets weighing about 6 pounds per 1000 rivets have commonly been used for closing rivets; but galvanized iron rivets made of very soft wire and weighing about 7 pounds per ioon rivets are fully as good, and cost 7 cents per pound in 1903 as compared with about 25 cents per pound for copper rivets. The weight of copper rivets is given in Table XVII.

Strength of Corrugated Steel.-The safe load per square foot for corrugated steel supported as a simple beam, for sheets with $21 / 2$-inch corrugations and of various gages is given in Fig. 112. This diagram is based on Rankine's formula

$$
W=\frac{32}{15} \frac{S h b t}{l}
$$

where $W=$ safe load in lbs.;
$S=$ working stress in lbs.;
$h=$ depth of the corrugations in inches;
$b=$ width of the sheet in inches;
$t=$ thickness of the sheet in inches;
$l=$ clear span in inches.


Fig. ili. Safe uniform load in pounds for corrugated steed fur DIFFERENT SPANS IN FEET.

A summary of experiments to determine the strength of corrugated steel made by the author's assistant, Mr. Ralph H. Gage, is given in

Table XVIII. The coefficient $C$ in column 8 depends on the angle that the metal makes with the horizontal axis and varies as follows: angle of $30^{\circ}, C=0.278 ; 45^{\circ}, C=0.293 ; 60^{\circ}, C=0.312$, and for $90^{\circ}, C=$ 0.393 .

## TABLE XVIII.

Summary of experiments to determine the strength of cor-
rugated steel.*

| 1 No. |  | 3 <br> Depth <br> Ins. | 4 <br> Thickness Ins. | 5 <br> Angle Metal with Axis | 6 <br> Span <br> Ins. | $\underset{\substack{\text { Tensile } \\ \text { Strenth } \\ \text { lbs. per } \\ \text { sq. in. }}}{\boldsymbol{T}}$ |  | 9ActualBrkng <br> Load <br> $W$ <br> lbs.$\|$ | 10 <br> Rankine's Formula. $M={ }_{15}^{4}$ Shbt <br> - lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.50 | 0.6025 | . 0588 | $39^{\circ} 11^{\prime}$ | 44.0 | 58,000 | 643 | 630 | 597 |
| 2 | 2.50 | 0.612 | . 0568 | $39^{\circ} 10^{\prime}$ | 44.0 | 58,000 | 632 | 630 | 587 |
| 3 | 2.50 | 0.625 | . 066 | $39^{\circ} 30^{\prime}$ | 44.0 | 58,000 | 745 | 720 | 692 |
| 4 | 2.50 | 0.606 | . 0655 | $40^{\circ} 42^{\prime}$ | 44.0 | 58,000 | 725 | 700 | 670 |
| 5 | 2.88 | 0.650 | . 0367 | $36^{\circ} 0^{\prime}$ | 43.25 | 67,000 | 505 | 500 | 475 |
| 6 | 2.88 | 0.650 | . 0366 | $36^{\circ} 0^{\prime}$ | 44.0 | 67,000 | 494 | 490 | 465 |
| 7 | 2.50 | 0.630 | . 0366 | $36^{\circ} 0^{\prime}$ | 44.0 | 50,000 | 358 | 350 | 335 |
| 8 | 2.50 | 0.61 | . 0365 | $36^{\circ} 0^{\prime}$ | 44.0 | 50,000 | 344 | 340 | 324 |
| 9 | 1.25 | 0.27 | . 0365 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 281 | 300 | 262 |
| 10 | 1.25 | 0.27 | . 0365 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 281 | 295 | 262 |
| 11 | 1.25 | 0.27 | . 0293 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 225 | 200 | 211 |
| 12 | 1.25 | 0.27 | . 0293 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 225 | 195 | 211 |
| 13 | 1.00 | 0.18 | . 0291 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 298 | 310 | 279 |
| 14 | 1.00 | 0.18 | . 0291 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 298 | 300 | 279 |
| 15 | 1.00 | 0.18 | . 026 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 266 | 280 | 250 |
| 16 | 1.00 | 0.18 | . 026 | $36^{\circ} 0^{\prime}$ | 24.0 | 50,000 | 266 | 260 | 250 |

The actual breaking load agrees in most cases more closely with Gage's formula than with Rankine's, although the latter is more often on the safe side.

Purlins are commonly spaced for a safe load of 30 lbs . per square foot as given in Fig. 112; if the purlins are spaced farther apart than this, the steel will deflect a dangerous amount when walked on, and will leak snow and rain. Girts should be spaced for a safe load of about 25 lbs. per square foot. From an inspection of Fig. 112, it is evident that corrugated steel lighter than No. 24 is of little use for mill buildings.

[^9]Corrugated steel of No. 26 or 28 gage is so thin that it soon rusts out and should never be used unless for lining cheap buildings.

Corrugated Steel Details.-Ridge Roll.-The ridge roll most commonly used is made from No. 24 flat steel, and has a $21 / 2$-inch roll and 6 -inch aprons. It comes in 96 -inch lengths and should be laid with 3 inches end lap. Plain and corrugated ridge roll are used (see Fig.


Ridge Roll


Gable Cornice Eave Cornice


Flashing for Stack



PLAIN RIDGE CAP.


CORRUGATED RIDGE ROL..


PLAIN RIDGE ROLL.


CORRUGATED END WALL FLASHING.


CORRUGATED SIDE FLASHING.

Fig. 113.
113). Ridge roll is fastened with rivets or nails spaced 6 to 8 inches apart.

Flashing.-Flashing is used where the roof changes slope, around chimneys and openings in the roof, and over windows and doors, and should be of sufficient dimensions and so arranged that at least 3 inches vertical height is obtained between the edge of the flashing and the end of the corrugated steel roofing. Vertical and horizontal seams of all flashing should be closely riveted. Flashing is made from flat sheets

(C)


HALF-ROUND GUTTER; LAP JOINT OR SLIP JOINT.


EAVES TROUGH HANGERS
Fig. 114.
of the same gage as the corrugated steel, and can be obtained up to 96 inches in length. Flashing is made both plain and corrugated (see Fig. II3).

Corner Finish.-Corner finish is made in various ways, three of which are shown in Fig. II3. Other methods are shuwn on the succeeding pages.


Fig. 115.


Hanging Gutter


Box Gutter Fig. in6.

Gutters and Conductors.-Gutters for eaves are ordinarily made from No. 24, and valley gutters from No. 20 galvanized steel. Gutters may be obtained in even foot lengths up to io feet, and should have 4 -inch end laps. Special flat sheets up to 42 inches in width can be obtained for making gutters and details.

The common sizes of half round gutters made by the Garry Iron and Steel Roofing Co., Cleveland, Ohio, are shown in Fig. ir4. Two common forms of adjustable hangers are shown in (a) and (b) in Fig. II4.

Two forms of hanging gutters are shown in Fig. II5 and one form of a hanging, and a box gutter used with brick walls are shown in Fig. II6.

A standard form of valley gutter is shown in Fig. II7. Extreme care should be used in making valley gutters to see that the sides are carried well up, and that the laps are well soldered.'


Conductors are made plain round or square, and corrugated round or square. Corrugated conductors are to be preferred to plain conductors for the reason that they will give when the ice freezes inside of them, and will not burst as the others often do. Common sizes of round pipe are $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}$, and $6^{\prime \prime}$ diameter. Common sizes of square pipe are $13 / 4^{\prime \prime} \times 21 / 4^{\prime \prime}, 23 / 8^{\prime \prime} \times 31 / 4^{\prime \prime}, 23 / 4^{\prime \prime} \times 41 / 4^{\prime \prime}$ and $33 / 4^{\prime \prime} \times 5^{\prime \prime}$, equal to $2^{\prime \prime}, 3^{\prime \prime}$ and $4^{\prime \prime}$ round pipe, respectively. Conductor pipes are fastened with hooks or by means of wire.

Design of Gutters and Conductors.-The specifications of the American Bridge Company for the design of gutters and conductors are as follows:

| Span of roof. | Gutter. | Conductor. |  |
| :--- | :--- | :--- | :---: |
| up to $50^{\prime}$ | $6^{\prime \prime}$ | $4^{\prime \prime}$ every $40^{\prime}$ |  |
| $50^{\prime}$ to $70^{\prime}$ | $7^{\prime \prime}$ | $5^{\prime \prime}$ |  |
| $70^{\prime}$ to $100^{\prime}$ | $8^{\prime \prime}$ | $5^{\prime \prime}$ |  |

Hanging gutters should have a slope of at least I inch to 15 feet.
The diagram in Fig. 118 for the design of gutters and conductors was described in Engineering News, April 17, 1902, by Mr. Emmett Steece, Assoc. M. A. Soc. C. E., City Engineer of Burlington, Iowa, as follows:-


Fig. il8.
"The curves are for $1 / 4$ pitch or flat roofs, to full pitch or domes. The areas are reduced to plan as shown. The minimum sizes of circular and commercial rectangular conductors are given on the left side of the diagram and the sizes and the minimum cross-sectional areas of square gutters are given on the right hand side.

To use the diagram: Assume an area of roof, say $30 \times 100 \mathrm{ft}$., or 3000 sq . ft., $1 / 2$ pitch and one conductor for the whole area. Note the intersection of the vertical over area 3000 and the curve of $1 / 2$ pitch; following thence the horizontal line to the left it strikes a diameter of 5 ins. for circular, or over $3^{1 / 8} \times 43 / 4$ ins. for commercial size. The next larger size would be used. The minimum cross-sectional area of gutters is shown on the right to be about 30 sq. ins., and the side of a square conductor about 4.5 ins."

This diagram was based on a maximum rainfall of 1.98 inches per hour.

English practice is as follows: Rain-water or down-pipes should have a bore or internal area of at least one square inch for every 60 square feet of roof surface in temperate climates. and about 35 square feet in tropical climates. They should be placeis not mor? than 20 feet apart, and should have gutters not less in width than twice the diameter of the pipe.

The practice among American architects is to provide about one square inch of conductor area for each 75 square feet of roof surface; no conductor less than 2 inches in diameter being used in any case.

Cornice.-There are many methods of finishing the gables and eaves of buildings. A gable finish for a steel end, and for a brick end


Fig. 119.


Flashed Finish
Fig. 120.
as used by the American Bridge Company, are shown in Fig. I19. The steel end may have a cornice made by bending the corrugated steel as shown, or a molded cornice.

The flashed finish shown in Fig. 120, is used by the American Bridge Company; it is quite effective and gives a very neat appearance. The corrugated steel siding should preferably be carried up to the roof steel.

The cornise and ridge finish shown in Fig. 121, designed by Mr. H. A. Fitch, Minneapolis, Minn., is very neat, efficient and economical.


FIG. 121.

The galvanized rivets are much cheaper than copper rivets, and are preferred by many to the copper rivets. The detail shown was for a small dry house in which the eave strut was omitted.


Fig. 122.

In Fig. 122, the eave cornice is made by simply extending the roofing steel, while the gable cornice is made by bending a sheet of corrugated steel over the ends of the purlins and nailing to wooden strips as shown.


Fig. 123.
Sheets heavier than No. 22 should not be bent in the field. The corner finish is made by bending a sheet of corrugated steel.

In Fig. 123, the eave and gable cornice are made of plain flat steel bent in the shop as shown. The eave cornice is made to mitre with the gable cornice, thus giving a neat finish at the corner. The corner finish is made by using sheets at the corners in which one-half is left plain.


Fig. 124.

In Fig. 124, the eave strut and gable cornice are molded. The two cornices are so made as to mitre at the corners, the mitres being made in the field. A plain corner cap is put on as shown, after bending the corrugated steel around the corner.


Fig. 125.


In Fig. 125, an eave purlin is used and a channel is placed along the ends of the purlins. Spiking strips should always be used as shown, and the eave purlin should be fastened to the rafter by means of angle clips.

The finish shown in Fig. 126, was used by the U. S. Government and needs no explanation.

Anti-condensation Roofing.-To prevent the condensation of moisture on the inner surface of a steel roof, and the resulting dripping, the anti-condensation roofing shown in Fig. 127 and in Fig. 129 is frequently used. The usual method of constructing this roofing is as follows: Galvanized wire poultry netting is fastened to one eave purlin

and is passed over the ridge, stretched tight and fastened to the other eave purlin. The edges of the wire are woven together, and the netting is fastened to the spiking strips, where used, by means of small staples. On the netting are laid one or two layers of asbestos paper I-16-inch thick, and sometimes one or two layers of tar paper. The corrugated steel is then fastened to the purlins in the usual way. Stove bolts, $3-16^{\prime \prime}$ diameter, with $\mathrm{I} \times 1 / 8 \times 4$-inch plate washers on lower side, are used for fastening the side laps together and for supporting the lining (see Fig. 129). The author would recommend that purlins be spaced one-half the usual distance where anti-condensation lining is used ; the stove bolts could then be omitted. Asbestos paper I-16inch thick comes in rolls, and weighs about 32 pounds per square of 100 square feet. Galvanized poultry netting comes in rolls 60 inches wide and weighs about 10 pounds per square.

The corrugated steel used with anti-condensation roofing should never be less than No. 22, and the purlins should be spaced for not less


End Elevation


Fig. i28. Corrugated steel plans for a transformer building.


Corrugated Steel on Sides, No.24 Black. Fainted,
1Corrugation Side lap and 4"End lap.
Corrugated Steel on Poof: Na.22 Black, Painted,
2 Corrugations Side lap and 6 End lap


Method of Fastening Steel and Lining on Root


Method of Fastening Steel on the Sides


Fig. 129. Corrugated steel list and dettails for transformer BUILDING.
than 30 pounds per square foot. A less substantial roof will not usually be satisfactory.

An engine house with anti-condensation lining on the roof and sides has been in use in the Lake Superior copper country for several years, and has been altogether satisfactory under trying conditions. The covering and lining of roof and sides are fastened by clinch nails to angle purlins and girts spaced about two feet apart.

A transformer building designed by the author and built by the Gillette-Herzog Mfg. Co., at East Helena, Montana, has anti-condensation lining on the roof as shown in Fig. 129, and is lined on the sides with one layer of asbestos paper, and $\mathrm{I} 1 / 4$-inch No. 26 corrugated steel. The black framework, the red side lining, and white roof lining made a very pleasing interior. This building after several years is giving entire satisfaction.

Corrugated Steel Plans.-The shop plans, list of steel and details of the corrugated steel for a mill building are shown in Fig. 128 and Fig. 129 (for the general plans and a detailed estimate of this building see Chapter XXVIII). Corrugated steel sheets should be ordered to cover three purlins or girts if possible. Bevel sheets should be ordered by number, and sheets should be split and reentrant cuts should be made in the field. All sheets should be plainly marked with the number or length. Sheets No. 22 or lighter can be bent in the field, heavier metal should always be bent at the mill. In preliminary estimates of corrugated steel allow 25 per cent for laps where two corrugations side lap and 6 inches end lap are required, and 15 per cent for laps where one corrugation side lap and 4 inches end lap are required.

Cost of Corrugated Steel.-Galvanized steel in 1903 is quoted at about 75 per cent off the standard list, f. o. b. Pittsburg ; list price of flat galvanized steel being as follows:


The net cost of corrugated galvanized steel is found by adding .05c. per pound to the net cost of flat galvanized sheets.

The standard card of extras used in 1903 is given below. These extras are to be added to the net price of flat black or galvanized sheets to obtain the cost. These extras are not subject to discount.

Card of extras for black or galvanized sheets.
For corrugating ............................ .osc. per lb.
For painting with red oxide ................. . .10c. ""
For painting with Dixon's graphite........... .20c. ""
For painting with Goheen's carbonizing coating .30c. " "
For all trimmings, etc., flashings, ridge caps,
and louvres ................................ooc.""
For flat sheets rolled from reworked muck bar .50c." "
For sheets rolled from iron scrap mixture.... .25c. ""
For arches ................................. .25c. ""
Black corrugated steel in 1903 is quoted about as follows, f. o. b. Pittsburg:

> No. 16 to 18 inclusive
> 2.2c. per lb.
> No. 20 to 22 inclusive
> 2.6c. "."
> No. 24 to 26 inclusive ................2.7c. ""

## CHAPTER XIX.

## Roof Coverings.

Introduction.-Mill buildings are covered with corrugated steel supported directly on the purlins; by slate or tile supported by subpurlins; or by corrugated steel, slate, tile, shingles, gravel or other composition roof, or some one of the various patented roofings supported on sheathing. The sheathing is commonly made of a single thickness of planks, I to 3 inches thick. The planks are sometimes laid in two thicknesses with a layer of lime mortar between the layers as a protection against fire. In fireproof buildings the sheathing is commonly made of reinforced concrete constructed as described in Chapter XX. Concrete slabs are sometimes used for a roof covering, being in that case supported directly by the purlins, and sometimes as a sheathing for a slate or tile roof.

The roofs of smelters, foundries, steel mills, mine structures and similar structures are commonly covered with corrugated steel. Where the buildings are to be heated or where a more substantial roof covering is desired slate, tile, tin or a good grade of composition roofing is used, or the roof is made of reinforced concrete. For very cheap and for temporary roofs a cheap composition roofing is commonly used. The following coverings will be described in the order given; corrugated steel, slate, tile, tin, sheet steel, gravel, slag, asphalt, shingle, and also the patent roofings ; asbestos, Carey's, Granite, Ruberoid and Ferroinclave. The construction of reinforced concrete roofing is described in Chapter XX.

Corrugated Steel Roofing.-Corrugated steel roofing is laid on plank sheathing or is supported directly on the purlins as described in Chapter XVIII. For the cost of erecting corrugated steel roofing see Chapter XXVIII.

Corrugated steel roofing should be kept well painted with a good paint. Where the roofing is exposed to the action of corrosive gases as in the roof of a smelter reducing sulphur ores, ordinary red lead or iron oxide paint is practically worthless as a protective coating; better results being obtained with graphite and ssphalt paints. Graphite paint has been quite extensively used for painting corrugated steel in the Butte, Mont., district. The corrosion of corrugated steel is sometimes very rapid. In 1898 the author saw at the Trail Smelter, Trail, B. C., a corrugated steel roof made of No. 22 corrugated steel and painted with oxide of iron paint that had corroded so badly in one year that one could stick his finger through it as easily as through brown paper. The climate in that locality is moist and the smelter was used for reducing sulphur ores. Galvanized corrugated steel is quite extensively used in the Lake Superior district.

Slate Roofing.-There are many varieties of roofing slate, among which the Brownville and Monson slates of Maine, and the Bangor and Peach Bottom slates of Pennsylvania are well known and are of


Fig. I30.
excellent quality. Besides the characteristic slaty color, green, purple, red and variegated roofing slates may be obtained. The best quality of slate has a glistening semi-metallic appearance. Slate with a dull
earthy appearance will absorb water and is liable to be destroyed by the frost.

Roofing slates are usually made irom $1 / 8$ to $1 / 4$ inches thick; 3 -16inch being a very common thickness. Slates vary in size from $6^{\prime \prime} \times 12^{\prime \prime}$ to $24^{\prime \prime} \times 44^{\prime \prime}$; the sizes varying from $6^{\prime \prime} \times 12^{\prime \prime}$ to $12^{\prime \prime} \times 18^{\prime \prime}$ being the most common.

Slates are laid like shingles as shown in Fig. 130. The lap most commonly used is 3 inches; where less than the minimum pitch of $1 / 4$ is used the lap should be increased.

The number of slates of different sizes required for one square of Ioo square feet of roof for a 3 -inch lap are given in Table XIX.

The weight of slates of the various lengths and thicknesses required for one square of roofing, using a 3 -inch lap is given in Table XX. The weight of slate is about 174 pounds per cubic foot.

The weight of slate per superficial square foot for different thicknesses is given in Table XXI.

The minimum pitch recommended for a slate roof is $1 / 4$; but even with steeper slopes the rain and snow may be driven under the edges of the slates by the wind. This can be prevented by laying the slates in slater's cement. Cementer'، joints should always be used around eaves, ridges and chimneys.

Slates are commonly laid on plank sheathing. The sheatning should be strong enough to prevent deflections that will break the slate, and should be torgued and grooved, or shiplapped, and dressed on the upper surface. Concrete sheathing reinforced with wire lath or expanded metal is now being used quite extensively for slate and tile roofs, and makes a fireproof roof. Tar roofing felt laid between the slates and the sheathing assists materially in making the roof waterproof, and prevents breakage when the roof is walked on. The use of rubbersoled shoes by the workmen will materially reduce the breakage caused by walking on the roof. Roofing slates may also be supported directly on laths or sub-purlins. The details of this method are practically the same as for tile roofing, which see.

TABLE XIX.
Number of roofing slates required to lay one square of roof with 3-INCH LAP.

| Size in Inches. | No. of Slate in Square. | Size in Inches. | No of Slate in Square. | Size in <br> Inches. | No. of Slate in Square. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \times 12$ | 533 | $8 \times 10$ | 277 | $12 \times 20$ | 141 |
| 712 | 457 | 916 | 246 | 1420 | 121 |
| 812 | 400 | 1016 | 221 | 1122 | 137 |
| 912 | 355 | 1216 | 184 | $12 \quad 22$ | 126 |
| 1012 | 320 | 918 | 213 | $14 \quad 22$ | 108 |
| $12 \quad 12$ | 266 | 1018 | 192 | $12 \quad 24$ | 114 |
| 714 | 374 | 1118 | 174 | $14 \quad 24$ | 98 |
| 814 | 327 | 1218 | 160 | 1624 | 86 |
| 914 | 291 | $14 \quad 18$ | 137 | $14 \quad 26$ | 89 |
| 1014 | 261 | $10 \quad 20$ | 169 | $16 \quad 26$ | 78 |
| $12 \quad 14$ | 218 | 1120 | 154 |  |  |

TABLE XX.
The weight of slate required for one square of roof.

| Length in Inches. | Weight in pounds, per square, for the thickness. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1/8" | $1^{3}{ }^{\prime \prime}$ | $1 / 4 "$ | $3 / 8{ }^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | 5/8" | $3 / 4$ | $1{ }^{\prime}$ |
| 12 | 483 | 724 | 967 | 1450 | 1936 | 2419 | 2902 | 3872 |
| 14 | 460 | 688 | 920 | 1370 | 1842 | 2301 | 2760 | 3683 |
| 16 | 445 | 667 | 890 | 1336 | 1784 | 2229 | 2670 | 3567 |
| 18 | 434 | 650 | 869 | 1303 | 1740 | 2174 | 2607 | 3480 |
| 20 | 425 | 637 | 851 | 1276 | 1704 | 2129 | 2553 | 3408 |
| 22 | 418 | 626 | 836 | 1254 | 1675 | 2093 | 2508 | 3350 |
| 24 | 412 | 617 | 825 | 1238 | 1653 | 2066 | 2478 | 3306 |
| 26 | 407 | 610 | 815 | 1222 | 1631 | 2039 | 2445 | 3263 |

TABLE XXI.
Weight of slate per square foot.

| Thickness-in. . ......... | $1 / 8$ | $2^{3} 6$ | $1 / 4$ | $3 / 8$ | $1 / 2$ | $5 / 8$ | $3 / 4$ | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight-lbs........... | 1.81 | 2.71 | 3.62 | 5.43 | 7.25 | 9.06 | 10.87 | 14.5 |

When roofing slates are laid on sheathing they are fastened by two nails, one in each upper corner. When supported directly on subpurlins the slates are fastened by copper or composition wire. Galvanized and tinned steel nails, copper, composition and zinc slate roofing nails are used. Where the roof is to be exposed to corrosive gases copper, composition or zinc nails should be used.

Slate roofs when made from first class slates well laid have been known to last 50 years. When poorly put on or when an inferior quality of slate is used slate roofs are comparatively short-lived. Slates are easily broken by walking over the roof and are sometimes broken by hailstones. Slate roofing is fireproof as far as sparks are concerned, but the slates will crack and disintegrate when exposed to heat. Local conditions have much to do with the life of slate roofs; an ordinary life being from 25 to 30 years.

First class slate $3-16$ to $1 / 4$ inches thick may ordinarily be obtained f. o. b. at the quarry for from $\$ 5.00$ to $\$ 7.00$ per square ; common slate for from $\$ 2.00$ to $\$ 4.00$ per square; while extra fine slate may cost from $\$ 10.00$ to $\$ 12.00$ per square.

An experienced roofer can lay from $11 / 2$ to 2 squares of slate in a day of io hours. In 1903 slater's supplies were quoted as follows: Galvanized iron nails, $21 / 2$ to 3 cents per lb .; copper nails, 20 cents per lb.; zinc nails, io cents per lb.; slater's felt, 70 to 75 cents per roll of 500 square feet; two-ply tar roofing felt, 75 cents per square; slater's cement in Io-lb. kegs, io cents per lb .

Trautwine gives the cost of slate roofs as $\$ 7.00$ per square and upwards. The costs of slate roofs per square is given in the reports of the Association of Railway Superintendents of Bridges and Buildings, as follows: New England, \$9.00 to \$12.00; New York, \$9.00 to \$10.00; Virginia \$4. 10 to \$5.00; California, \$10.00 to \$10. 50.

Tile Roofing.-Baked clay or terra-cotta roofing tiles are made in many forms and sizes. Plain roofing tiles are usually $101 / 2$ inches long, $61 / 4$ inches wide and $5 / 8$ inches thick; weigh from 2 to $21 / 2$ pounds each and lay one-half to the weather. There are many other forms of
tile among which book tile, Spanish tile, pan tile and Ludowici tile are well known. Tiles are also made of glass and are used in the place of skylights.

Tiles may be laid (1) on plank sheathing, (2) on concrete and expanded metal or wire lath sheathing, or (3) may be supported directly on angle sub-purlins as shown in Fig. 87. Tiles are laid on sheathing in the same manner as slates.

The roof shown in Fig. 87 was constructed as follows: Terracotta tiles, manufactured by the Ludowici Roofing Tile Co., Chicago, Ill., were laid directly on the angle sub-purlins, every fourth tile being secured to the angle sub-purlins by a piece of copper wire. The tiles were interlocking, requiring no cement except in exceptional cases. The tiles were $9 \times 16$ inches in size; I 35 being sufficient to lay a square of 100 square feet of roof. These tiles weigh from 750 to 800 lbs . per square, and cost about $\$ 6.00$ per square at the factory. Skylights in this roof were made by substituting glass tiles for the terra-cotta tiles. This and similar tile has been used in this manner on a large number of mills and train sheds with excellent results.

Tile roofs laid without sheathing do not ordinarily condense the steam on the inner surface of the roof unless the tiles are glazed, although several cases have been brought to the author's attention where the condensation has caused trouble with tile roofs made of porous tiles. Anti-condensation roof lining should be used where there is danger of excessive sweating, or a porous tile should be used that is known to be non-sweating. The cost of tile roofing varies so much that general costs are practically worthless. The reports of the Association of Railway Superintendents of Bridges and Buildings give the cost in New England as from $\$ 30.00$ to $\$ 33.00$ per square.

Tin Roofs.-Tin plates are made by coating flat iron or steel sheets with tin, or with a mixture of lead and tin. The former is called "bright" tin plate and the latter "terne" plate. Terne plates should not be used where the roof will be subjected to the action of corrosive gases for the reason that the lead coating is rapidly destroyed. Plates are
covered with tin (I) by the dipping process in which the plates are pickled in dilute sulphuric acid, annealed, again pickled, dipped in palm oil and then in a bath of molten tin or tin and lead; or (2) by the roller process in which the plates are run through rolls working in a large vessel containing oil, immediately after being dipped. The latter method gives the better results.

Two sizes of tin plates are in common use, $14^{\prime \prime} \times 20^{\prime \prime}$ and $20^{\prime \prime} \times$ $28^{\prime \prime}$, the latter size being most used. Tin sheets are made in several thicknesses, the IC, or No. 29 gage weighing 8 ounces to the square foot, and the IX, or No. 27 gage weighing io ounces to the square foot, being the most used. The standard weight of a box of 112 sheets, $14 \times$ 20 size is 108 pounds for IC plate, and 136 pounds for IX plate. Boxes containing imperfect sheets or "wasters" are marked ICW or IXW. Every sheet should be stamped with the name of the brand and the thickness.

The value of tin roofing depends upon the amount of tin used in coating and the uniformity with which the iron has been coated. The amount of tin used varies from 8 to 47 pounds for a box of $20 \times 28$ size containing II2 sheets.

Tin roofing is laid (I) with a flat seam, or (2) with a standing seam. In the former method the sheets of tin are locked into each other at the edges, the seam is flattened and fastened with tin cleats or is nailed firmly and is soldered water tight. Rosin is the best flux for soldering, although some tinners recommend the use of diluted chloride of zinc. For flat roofs the tin should be locked and soldered at all joints, and should be secured by tin cleats and not by nails. For steep roofs the tin is commonly put on with standing seams, not soldered, running with the pitch of the roof, and with cross-seams double locked and soldered. One or two layers of tar paper should be placed betwen the sheathing and the tin.

In painting tin all traces of grease and rosin should be removed, benzine or gasoline being excellent for this purpose. A paint composed of io pounds venetian red and one pound red lead to one gallon of
pure linseed oil is recommended. The under side of the sheets should be painted before laying. Tin roofs should be painted every two or three years. If kept well painted a tin roof should last 25 to 30 years.

For flat seam roofing, using $1 / 2$-inch locks, a box of $14 \times 20$ tin will cover 192 square feet, and for standing seam, using $3 / 8$-inch locks and turning $\mathrm{I} 1 / 4$ and $\mathrm{I} 1 / 2$-inch edges, making I -inch standing seams, it will lay 168 square feet. For flat seam roofing, using $1 / 2$-inch locks, a box of $20 \times 28$ tin will lay about 399 square feet, and for standing seam, using $3 / 8$-inch locks and turning $11 / 4$ and $11 / 2$-inch edges, making I-inch standing seams, it will lay about 365 square feet.

Current prices in 1903 for tin in small quantities were about as follows:

American Charcoal Plates:
IC, $14 \times 20 \ldots . . . . \$ 5 \cdot 50$ to $\$ 6.50$ per box of 112 sheets;
IX, $14 \times 20 \ldots . .$.
American Coke Plates, Bessemer:
IC, $14 \times 20 \ldots . . . . . \$ 4.70$ to $\$ 4.80$ per box of 112 sheets;
IX, $14 \times 20$. . . . . . . $\$ 6.60$ to $\$ 8.25$ per box of 112 sheets.
American Terne Plates:

$$
\begin{aligned}
& \text { IC, } 20 \times 28 \text {........ . \$ 9.50; } \\
& \text { IX, } 20 \times 28 \text {......... } \$ \text { II. } 50 .
\end{aligned}
$$

Two good workmen can put on and paint from $21 / 2$ to 3 squares of tin roofing in 8 hours. Tin roofs cost from $\$ 7.00$ to $\$ 11.00$ or $\$ 12.00$ per square depending upon the specifications and the cost of labor.

Sheet Steel Roofing.-Sheet steel roofing is sold in sheets 28 inches wide and from 4 to 12 feet long, or in rolls 26 inches wide and about 50 feet long. It is commonly laid with vertical standing seams and horizontal flat seams; tin cleats from 12 to 15 inches apart being nailed to the plank sheathing and locked into the seams. Sheet steel plates are also made with standing crimped seams near the edges, which are nailed to $V$-shaped sticks; the horizontal seams being made by lapping about 6 inches.

Care should be used in laying sheet steel roofing to see that it does not come in contact with materials containing acids, and it should be kept well painted. The weight of flat steel of different gages is given in Table XV. Nos. 26 and 28 gage sheets are commonly used for sheet steel roofing. No. 26 black sheet steel was quoted in 1903 at about $\$ 3.20$ per 100 pounds, and No. 26 galvanized sheet steel at about $\$ 4.00$ per ioo pounds in small lots. Sheet steel roofing can be laid at a somewhat less cost than tin roofing.

Gravel Roofing.-Gravel roofing is made by laying and firmly nailing several layers of roofing felt on sheathing so as to break joints from 9 to 12 inches; the laps are mopped and cemented together with roofing cement or tar, and finally the entire surface is covered with a good coating of hot cement or tar. The cement or tar should not be hot enough to injure the fibre of the felt. While the cement or tar is still hot the surface of the roof is covered with a layer of clean gravel that has been screened through a $5 / 8$-inch mesh. It requires from 8 to io gallons of tar or cement and about $1 / 6$ of a yard of gravel per square of soo square feet of roof. When the roof is to be subjected to the action of corrosive gases it should be flashed with copper or composition, or the flashing may be made of felt. The number of layers of felt varies with the conditions, but should never be less than four (4-ply).

The details of laying gravel roofs differ and it is impossible to do more than give a few standard specifications. The following specifications are about standard in the West. In writing specifications for four-ply gravel roofing omit one layer of roofing felt in the specifications for five-ply gravel roofing. Three-ply roofing is sometimes used for temporary structures.

Five (5) Ply Wool Felt, Composition and Gravel Roof.-First cover the sheathing boards with one (I) layer of dry felt and over this put four (4) thicknesses of wool roofing felt, weighing not less than fifteen (15) pounds (single thickness) to the square of one hundred (IOC) feet. This felt to be smoothly and evenly laid and well cemented together the full width of the lap, not less than nine (9) inches between each layer, with best roofing cement or refined tar, using not less than
one hundred (100) pounds of roofing cement or tar to the square of one hundred (100) feet. All joinings along walls and around openings to be carefully made. The roof to be then covered with a heavy coating of roofing cement or tar and screened gravel, not less than one (I) cubic yard of gravel to six hundred ( 600 ) square feet, gravel to be screened through $5 / 8$-inch mesh and free from sand and loam. All walls and openings to be flashed. All roofing cement and tar is to be applied hot.

Six (6) Ply Cap Sheet Wool Felt, Composition and Gravel Roof. -First cover the sheathing boards with one (i) layer of dry felt and over this put four (4) thicknesses of wool roofing felt, weighing not less than fifteen (15) pounds (single thickness) to the square of one hundred ( IOO ) feet. This felt to be smoothly and evenly laid and well cemented together the full width of the lap, not less than nine (9) inches between each layer, with best roofing cement or refined tar, using not less than one hundred and twenty (120) pounds of roofing cement or tar to the square of one hundred (100) feet. The entire surface then to be mopped over with roofing cement or tar and a cap sheet of wool felt applied. All joinings along the walls and around the openings to be carefully made. The roof to be then covered with a heavy coating of roofing cement or tar and screened gravel, not less than one (1) cubic yard of gravel to six hundred (600) square feet, gravel to be screened through $5 / 8$-inch mesh and free from sand and loam. All walls and openings to be flashed. All roofing cement and tar shall be applied hot.

Six (6) Ply Combined Flax and Wool Felt, Composition and Gravel Roof.-First cover the sheathing boards with one (1) layer of dry felt and over this put one (I) layer of flax felt and three thicknesses of wool roofing felt, weighing not less than fifteen (15) pounds (single thickness) to the square of one hundred (100) feet. This felt to be smoothly and evenly laid and well cemented together the full width of the lap, not less than eleven (II) inches between each layer, with best roofing cement or refined tar, using not less than one hundred and twenty (I20) pounds of roofing cement or tar to the square of one hundred (100) feet. The entire surface then to be mopped over with roofing cement or tar and a cap sheet of wool felt applied. All joinings along walls and around openings to be carefully made. The roof to be then covered with a heavy coating of roofing cement or tar and screened gravel, not less than one (I) cubic yard of gravel to six hundred ( 600 ) square feet, gravel to be screened through $5 / 8$-inch mesh and
free from sand and loam. All walls and openings to be flashed. All roofing cement and tar shall be applied hot.

In Building Construction and Superintendence, Part II, Kidder gives the following specifications for flashing a gravel roof:
"Flashing.-Finish the roofing against fire walls, chimneys, scuttle and skylight by turning the felt up 4 inches against the wall. Over this lay an 8 -inch strip of felt with half its width on the roof. Fasten the upper edge of the strip and the several layers of felt to the wall by laths or wooden strips securely nailed, and press the strip of felt into the angle of the wall and cement to the roof with hot pitch. Nail the lower edge of the strip to the roof every 4 or 5 inches. Take special care in fitting around chimneys and skylights. Extend the felt up 6 inches on the pitch of the roof, and secure every 4 inches with 3 d nails with tin washers."

The pitch should not be more than $1 / 4$ and should preferably be about $3 / 4$ to $I$ inch to the foot. Gravel is sometimes used on roofs nearly flat.

Gravel roofing under ordinary conditions will last for from to to 15 years. With careful attention it can be made to last longer and has been known to last 30 years.

The cost of gravel roofing varies with local conditions and specifications. In various reports of the Association of Railway Superintendents of Bridges and Buildings costs of gravel roofs, not including the sheathing, per square are given as follows: Three-ply gravel roof in California, costs $\$ 3.75$; four-ply (4) gravel roof in Kansas, costs $\$ 3.00$; i: Chicago, costs from $\$ 3.00$ to $\$ 4.00$; and in New England, costs from $\$ 4.00$ to $\$ 5.00$. The cost varies greatly with the specifications.

Prepared Gravel Roofing.-Prepared gravel roofings may be bought in the market. Prepared gravel roofing manufactured by the Armitage Manufacturing Company, Richmond, Va., was quoted at $\$ 2.50$ per roll of 108 square feet and including nails and cement, delivered in central Illinois. This company has discontinued the manufacture of prepared slag roofing.

Slag Roofing.-Slag is sometimes used in the place of gravel in making roofs. The method of constructing the roof and the specifica-
tions are essentially the same as for a gravel roof. For detailed specifications for laying slag roofing see description of the Locomotive Erecting and Machine Shop, Philadelphia \& Reading R. R., given in Part IV.

Asphalt Roofing.-Asphalt roofing is laid like tar and gravel roofing except that asphalt is used in the place of tar or cement. For discussion of the composition and properties of asphalt see Baker's Roads and Pavements, Chapter XIII. The following specifications will give a good roof:

Five (5) Ply Wool Felt, Trinidad Asphalt and Gravel Roof.-First cover the sheathing boards with one (1) thickness of dry felt, and over this put four (4) thicknesses of No. I wool roofing felt, weighing not less than fifteen (15) pounds (single thickness) to the square of one hundred ( 100 ) square feet. The felt to be smoothly and evening laid, and well cemented together the full width of the lap, rot less than nine (9) inches between each layer, with Trinidad asphalt roofing cement, using not less than one hundred (100) pounds of asphalt to one square of one hundred (100) square feet. All joinings along the wall and around openings to be carefully made. The roof is then to be covered with a coating of asphalt and screened gravel, not less than one (I) cubic yard of gravel to six hundred ( 600 ) square feet of roof, gravel to be screened through a $5 / 8$-inch mesh and to be free from loam. All walls to be flashed with old style tin or galvanized iron, or a $2 \times 4$ is to be built into the walls to make roof connections to.

Five (5) Ply Combined Flax and Wool Felt, Trinidad Asphalt and Gravel Roof.-First cover the sheathing boards with one thickness of dry felt, over this put one (I) thickness of flax felt and three (3) thicknesses of No. I wool roofing felt, weighing not less than fifteen (I5) pounds (single thickness) to the square of one hundred (ioo) square feet. The felt to be smoothly and evenly laid, and well cemented together the full width of the lap, not less than eleven (ii) inches between each layer, with Trinidad asphalt roofing cement, using not less than one hundred (100) pounds of asphalt to the square of one hundred ( $\mathrm{I} O \boldsymbol{0}$ ) square feet. All joinings along the walls and around openings to be carefully made. The roof is then to be covered with a coating of Trinidad asphalt roofing cement and screened gravel, not less than one (I) cubic yard of gravel to six hundred (600) square feet
of roof, gravel to be screened through a $5 / 8$-inch mesh and to be free from loam. All walls to be flashed with old style tin or galvanized iron, or a $2 \times 4$ is to be built into the wall to make connections to.

Prepared asphalt roofing can be bought in the market. It is sold in rolls 36 inches wide and is laid in courses.

The Arrow Brand• Ready Asphalt Roofing, manufactured by the Asphalt Ready Roofing Company, New York, was quoted in 1903 delivered in central Illinois as follows: Arrow Brand No. i, sand surfaced, per roll $\$ 2.75$; rolls contain ino square feet which will cover 100 square feet of roof and weigh 80 pounds. Arrow Brand No. 2, gravel surfaced, per roll $\$ 2.75$; rolls contain IIo square feet which will cover 100 square feet of roof and weigh 140 pounds. The necessary nails and asphalt required in laying the roofing are included in the above prices. This roofing is in use by a number of railways.

Shingle Roofs.-Shingle roofs are now very seldom used for mill buildings. Shingles have an average width of 4 inches and with 4 inches laid to the weather 900 are required to lay one square of roof. One thousand shingles require about 5 lbs . of nails. One man can lay from 1500 to 2000 shingles in a day of 8 hours. The cost of shingle roofs varies with the locality from, say, $\$ 3.25$ to $\$ 6.25$ per square.

Asbestos Roofing.-The "Standard" Asbestos Roofing, manufactured by the H. W. Johns-Manville Co., New York, is composed of a strong canvas foundation with asbestos felt on the under side, and satturated asbestos felt on the upper side finished with a sheet of plain asbestos; the whole being cemented together with a special cement and compressed together into a flexible roofing. It does not require painting, although it is commonly painted with a special paint, one gallon of which will cover about 150 square feet. The roofing is laid with a lap of 2 inches, beginning at the lower edge of the roof and running parallel to the eaves. The laps are cemented and are nailed with special roofing nails and caps. The roofing is laid on sheathing and is very easily and cheaply laid. It is quite flexible and may be used for flashing and for gutters. It is practically fireproof and makes a very satisfactory roof. Asbestos roofing comes in rolls and weighs about 75
pounds per square. It costs about $\$ 3.00$ per square laid on the roof.
The above named company makes several other brands of asbestos roofing the cost of which is about the same as the "Standard."

Asbestos roofing felts may be purchased which are used for roofing in one, two or three-ply, and are laid in the same way as for gravel roofing.

Carey's Roofing.-Carey's Magnesia Flexible Cement Roofing, manufactured by the Philip Carey Manufacturing Company, Lockland, Ohio, is made by putting a layer of asphalt cement composition on a foundation of woolen felt and imbedding a strong burlap in the upper surface of the cement. After laying, the burlap is covered with a tough elastic paint which when it dries gives a surface similar to slate. The roof is practically acid proof and burns very slowly. It comes in rolls 29 inches wide and containing sufficient material to lay one square of roof. The roofing is made in two weights, standard weighing 90 pounds per square, and extra heavy weighing about 115 pounds per square. A special flap is provided on one side to cover the nail heads. The roofing is very pliable and can be used for flashing and for gutters. It should be laid on sheathing and is very easily and cheaply applied. It may be laid over an old shingle or corrugated iron roof. It costs about $\$ 2.75$ to $\$ 3.25$ per square laid on the roof.

Granite Roofing.-Granite Roofing, manufactured by the Eastern Granite Roofing Company, New York, is a ready-to-lay composition roofing with manufactured quartz pebbles imbedded in its upper surface. It is a very satisfactory roofing and is quite extensively used. It costs about $\$ 2.75$ to $\$ 3.75$ per square laid on the roof.

Ruberoid Roofing.-P. \& B. Ruberoid Roofing, manufactured by the Standard Paint Co., New York, is quite extensively used and has given good satisfaction. The following description is taken from the maker's catalog: "No paper whatever is used in the manufacture of Ruberoid Roofing. It has a foundation of the best wool felt, except in the case of the $1 / 2$-ply grade which is a combination of wool and hair. This is first saturated with the P. \& B. water and acid proof compound,
and afterwards coated with a hard solution of the same material, thereby making the roofing at once light in weight as well as strong, durable and elastic. It is thoroughly acid and alkali proof, is not affected by coal gas or smoke and can be laid on either pitched or flat roofs, proving equally effectual in both cases. Inasmuch as it contains no tar or asphalt the roofing is not affected by extremes in temperature."

Ruberoid is made $1 / 2$-ply weighing 22 pounds per square; I-ply weighing 30 pounds per square; 2 -ply weighing 43 pounds per square; and 3 -ply weighing 5 I pounds per square. The 2 -ply and the 3 -ply roofing are commonly used for factories and mills. The roofing is put up in rolls 36 inches wide, containing two squares ( 200 square feet), with an additional allowance of 16 square feet for two-inch laps at the seams; sufficient tacks, tin caps and cement are included with each roll.

Ruberoid roofing costs from $\$ 2.75$ to $\$ 3.75$ per square laid on the roof.

Ferroinclave.-This is a patented roofing made by the Brown Hoisting Machinery Co., Cleveland, Ohio, and is described in a letter to the author as follows: "Ferroinclave roofing is made by coating a special crimped or corrugated iron or steel on both sides with a mixture of Portland cement and sand, after which it is painted on the upper side. The sheets are made of No. 22 or No. 24 sheet steel, and full sized sheets are 20 inches wide and 10 feet long. The steel is crimped or corrugated with corrugations about 2 inches wide and $1 / 2$ inch deep, the width of the corrugation on the outer side being less than on the inner side, thus forming a key to hold the cement mortar in place. The sheets are laid in the same manner as corrugated steel, and a coating of Portland cement mortar, composed of I part Portland cement and 2 parts sand, is plastered on the upper and lower surfaces to a thickness of $3 / 8$ of an inch above and below the corrugations, making the total thickness of the roofing $1 / 4$ inches. The weight of No. 24 sheet steel Ferroinclave is about 15 lbs . per square foot when filled with cement mortar as above. A test of a sheet of Ferroinclave made as above, showed failure with a uniformly distributed load of 300 lbs . per square foot with supports $4^{\prime} 10^{\prime \prime}$ apart, the cement having set ten days. The
cost of this roofing is about $\$ 21.00$ per square complete in place on the roof." The Brown Hoisting Machinery Co. has also used Ferroinclave quite extensively for floors and side walls of buildings.

Examples of Roofs.-The Boston Manufacturer's Mutual Fire Insurance Co., recommend the following roof for mill buildings: "Roofs of ordinary type may be only of plank covered with composition or other suitable roofing material. In special cases the roof should consist of a 3 -inch plank, I inch of mortar, a I-inch top board and a 5 -ply composition roof. Such a roof is impervious to heat and cold."

The roof of the machine shop of the Chicago City Railway is composed of $2 \times 6-\mathrm{in}$. tongued and grooved sheathing overlaid with 5 layers of "Cincinnati" wool felt, having 100 pounds of cement to 100 square feet, and is covered with tar and gravel.

The roof of the Lehigh Valley R. R. Shops at Sayre, Pa., is a slag roofing on armored concrete.

The roof of the Great Northern R. R. shops at St. Paul, Minn., has double sheathing with $\mathrm{I} \times 3$-in. strips between the layers to provide an air pace and prevent sweating. Monarch roofing is laid on the sheathing.

The roof of the Philadelphia \& Reading shops, at Reading, Pa., is felt on plank sheathing covered with tar and slag.

The roof of the A. T. \& S. F. R. R. machine shops at Topeka, Kas., is Ludowici tile laid on $2 \times 2$-in. timber strips.

The roof of the Union Train Shed at Peoria, Ill., is Ludowici tile laid on angle sub-purlins as shown in Fig. 87.

Roof Coverings for Railway Buildings.-The following abstract of the report of the committee on roof coverings presented at the annual meeting of the Association of Railway Superintendents of Bridges and Buildings, 1902, will give a very good idea of the present practice in covering railroad buildings.
"Slate is much used for station buildings where there is not much climbing for repair of skylights or telegraph wires. It has a life of from 35 to 40 years, and the roof should have a pitch of not less than 6 inches per foot. Vitrified tile is very durable where rightly made and laid on steep roofs, but is not adapted for ordinary railroad buildings. Shingle roofs last as long as 28 years, and should be laid with

6 inches pitch per foot; they are very satisfactory where slate is too expensive. For flat roofs a tar and gravel composition is preferred and will last 12 to 18 , and even 20 years. Slag or broken stone of the size of peas is sometimes used in the place of gravel. In such roofs, much depends upon the paper used, the pitch, and the thoroughness of the work; 3 -ply is too light, 4 -ply is good, but 5 -ply is better. Asphalt pitch is sometimes preferred to coal-tar, but the latter is sufficiently durable. An asphalt-gravel roof must slope not more than $1 / 2$ inch to the foot, on account of the liability to run in hot weather; but tar-gravel roofs may have a pitch of I inch per foot. With such very flat roofs as are required for asphalt, any settlement will form hollows that will hold water.
"Sheet metal roofs, corrugated or flat are not durable. Steel is less durable than iron and will last only about one year, where exposed to engine gases. Tin shingles of good quality give good results. Painted shingles have a short life unless frequently painted.
"Of patented roof coverings, Sparham is pulverized talcose lime rock, mixed with coal-tar pitch and applied hot to the roof with a trowel. This may be used for a flat roof or for a roof with a pitch of 3 or 4 inches per foot. Ruberoid is a wool felt saturated with a parafine preparation. .Perfected Granite Roofing is 2-ply tarred paper with sea grit on one side. Both of these last may be used on any roof with a pitch of not less than 2 inches per foot. Cheap roofs made from roofing papers require mopping with tar, and if thus treated every two years (before the paper is bare) will last almost indefinitely. In railway work, however, roofs are generally left without attention until leaks are reported, when it is too late for mopping to do any good.
"Roofs requiring treatment every two years can hardly be considered as permanent. Slate for pitched roofs and tar and gravel for flat roofs are as nearly fermanent as can be obtained for railway buildings.
"The cost per square of 100 square feet for roofs of different kinds in New England is as follows:


## CHAPTER XX.

## Side Walls and Concrete Buildings.

SIDE WALLS.-The sides of steel frame mill buildings are covered with corrugated steel, expanded metal and plaster, wire lath and plaster, or with Ferroinclave a patent covering made of special corrugated steel and plaster, manufactured by the Brown Hoisting Co., Cleveland, Ohio.

Corrugated Steel.-The methods of fastening corrugated steel to the sides of buildings are the same as on the roof and are described in detail in Chapter XVIII. Where warmth is desired, buildings covered with corrugated steel are often lined with No. 26 corrugated steel with $I / 4$-inch corrugations. Where this lining is used spiking pieces should be bolted to the girts and intermediate spiking pieces should be placed between the girts to which to nail the lining. If this is not done the corrugated steel will gape open for the reason that it is impossible to rivet the side laps of the lining. Where anti-condensation lining is used on the sides it is made the same as on the roof except that the girts should always be placed not more than one-half the usual distance. The clinch-nail fastening is the best method for fastening the corrugated steel where the anti-condensation lining is used.

Expanded Metal and Plaster.-The methods of making walls of expanded metal and plaster are shown in Fig. I3I and Fig. I32, which show details of the construction of the soap factory buildings of W. H. Walker, Pittsburg, Pa. These buildings were constructed as follows: The buildings were made with a self-supporting steel frame, all connections except those for the purlins and girts being riveted. Inaccessible surfaces were painted with red lead and linseed oil before erection and the entire framework was painted two coats of graphite paint after
erection. The trusses are spaced from 14 to 18 feet and carry 6,7 and 8 -inch channel purlins. The purlins are spaced from 6 to 7 feet apart and carry roof slabs $21 / 2$ to 3 inches thick made of expanded metal and concrete. The expanded metal is made from No. 16 B. W. G. steel plate with 4 -inch mesh, and the concrete is composed of I part Portland cement, 2 parts sand and 4 parts screened furnace cinders. The roof slabs are covered with $10 \times 12$-inch slate nailed directly to the


Fig. I3I. Cross-section of steel building covered with expanded METAL AND PLASTER.
concrete, and are plastered smooth on the under side. The side walls were made by fastening $3 / 4$-inch channels at 12 -inch centers to the steel framing, and covering this framework with expanded metal wired on. The expanded metal was then covered on the outside with a coating of cement mortar composed of I part Portland cement and 2 parts sand and on the inside with a gypsum plaster, making a wall about 2 inches thick. The ground floors were made by covering the surface with a 6 -inch layer of cinders in which were imbedded $2 \times 4$-in. white pine nail-
ing strips 16 inches apart, and on these strips was laid a floor of tongued and grooved maple boards $11 / 4$ inches thick and $21 / 2$ inches wide. The upper floors are made of concrete slabs reinforced with expanded metal, and supported on beams spaced 4 to 15 feet apart. Where the spans exceed 7 feet suspension bars $7^{\prime \prime} \times 3 / 8^{\prime \prime}$ were placed 3 feet apart and were bent around the flanges of the beams. The concrete filling was composed of I part Portland cement, 2 parts sand and 6 parts cinders. (For another description of this building see Engineering Record, August 25, 1900.)


Fig. i32. Side elevation of steel building covered with exPANDED METAL AND PLASTER.

The Northwestern Expanded Metal Co. now recommends that the first coat of the plaster used for curtain walls be composed of two parts lime paste, I part Portland cement and 3 parts sand, and that the wall be finished with a smooth coat composed of I part Portland cement and 2 parts sand.

For coating on wire lath the following has been fornd to give satisfactory results in Chicago and vicinity: For the first coat use a
mortar composed of I part Portland cement and 2 parts ordinary lime mortar. The lime should be very thoroughly slaked before using as the presence of any free lime will injure the wall. After the first coat has hardened it is thoroughly soaked and a finishing coat composed of I part Portland cement, 2 parts sand and a small quantity of slaked lime is applied and rubbed smooth.

A method of plastering curtain walls is described by Mr. George Hill in the Transactions of the American Society of Civil Engineers, Vol. 29, as follows: "The external curtain walls were composed of hard plaster, Portland cement and sand in equal parts, the srratch coat being applied to uncoated metallic lath, making the thickness of the scratch coat about I inch; then a surfacing of Portland cement $1 / 2$-inch thick was applied on each side making the curtain walls a total thickness of 2 inches. Good results were obtained in every case except one, where the scratch coat was alternately frozen and thawed several times, and the outer surfacing of the wall peeled off in patches."

The Northwestern Expanded Metal Co. does not recommend the use of hard or patent plasters for curtain walls.

Expanded metal and plaster curtain walls are light, strong and efficient. They do not require the heavy foundations required by brick and stone walls and are fireproof. They can be used to advantage where it is desirable to have a large glass area in the sides of buildings. This type of construction is almost ideal for factory construction and will be much used in the future. There are quite a number of different systems but the methods of construction are essentially the same in all.

Curtain walls are made of wire lath and plaster in the same way as expanded metal and plaster and have all the advantages of the latter.

The cost of curtain walls made as described above is about $\$ 1.50$ to $\$ \mathrm{I} .8 \mathrm{o}$ per square yard.

For a detailed description of the construction of small cement and steel buildings see Engineering Record, March 26, 1898.

Concrete Slabs.-The construction of reinforced concrete slabs patented by Milliken Brothers, New York, is described in Engineering

Record, December 22, 1900, as follows: "The slabs used on the roof of the concrete stable built for the Anglo-Swiss Condensed Milk Company, Brooklyn, N. Y., were 4 feet wide and about 15 feet long and were constructed as follows: Each slab has a steel frame with three $2 \times 1 / 4$-inch transverse strips set edgewise at the ends and middle, and connected by longitudinal $1 / 4$-inch rods about $35 / 8$ inches apart so as to form a gridiron. The rods are set in staggered holes in the edge of the bars and form a framework over and under which No. I4 transverse wires are woven 6 inches apart. The lower surface of the frame is covered with open mesh fine-wire netting, wired around the edges, and the frame is filled with I:2:4 Portland cement concrete made with very fine broken stone. The slab is 2 inches thick and has offset edges to make scarfed joints which are set with cement mortar. Voids are left in the concrete at the edges of the slabs to permit thin flat stee! bars or angle clips to be bolted to the frames, and to be bolted to or locked around the framework. Then the holes are flushed with cement mortar and a $1 / 4$-inch surface coat is plastered over the slabs for the final finish. These slabs have been used for side and partition walls as well as for roof sheathing."

Masonry Walls.-Walls for filling in between the columns of mill buildings are commonly made very light, being usually determined by the clearance and the height. For buildings with 20 to 25 ft . posts, 8 -inch walls are very commonly used. Where the columns are placed inside of the line of the walls, a greater thickness of wall is used than above; I3 and 17-inch walls being quite common.

The thickness of factory and warehouse walls which support roof trusses is about as given in Table XXII.

The thickness of the wall may be decreased when pilasters are used to assist in supporting the trusses.

For detailed information on the construction of brick and stone walls see Baker's Masonry Construction and Kidder's Building Construction and Superintendence, Part I.

TABLE XXII.
Thickness of warehouse walls.

| Height <br> of <br> Wall. <br> Feet. | Brick. <br> Inches. | Stone. <br> Inches. |
| :---: | :---: | :---: |
|  |  |  |
| 50 | 16 | 20 |
| 75 | 20 | 24 |

CONCRETE BUILDINGS.-Within the last few years quite a number of factory buildings have been constructed of concrete. Most of these buildings are monolithic, although recently quite a number of patents have been issued for concrete building blocks. The walls are usually made hollow when made monolithic or made of concrete blocks; the air space prevents the passage of dampness through the walls, makes the building warmer and is less expensive than to make the wall solid. In monolithic concrete construction the roof, floors and the angles in the walls are reinforced with metal put in according to some one of the many systems now in use.

The following abstract of the description of the construction of a monolithic concrete building, printed in the Engineering Record, July 30th, and August 20th., 1898, will give the reader an idea of the methods employed.
"The factory of the Pacific Coast Borax Company, at Constable Hook, Bayonne, N. J., is about $200 \times 250$ feet in extreme dimensions, and is partly one story and partly four stories ir height. All the floors, floor beams, walls, columns, etc. are constructed of reinforced concrete on the Ransome system, built in molds so as to form a monolithic structure continuous throughout, except for the shrinkage joints dividing it into separate panels.
"The columns are supported on concrete footings reinforced with twisted steel bars. The walls of the building were built solid at the ends of the floor beams and the intermediate portions were made hol.
low by inserting wooden fillers, which were afterwards removed. The walls of the four story portion are 16 inches in extreme thickness up to the third floor, and are 15 inches above that point. The hollow walls have 3 to 4 inches of concrete on each side of the air space. Both the walls and the columns were bonded by vertical bars of twisted steel $3 / 4$ inch square, extending through them continuously from top to bottom, and similar rods were carried through the buildings from side to side transverse to the beams imbedded in the different floors about 12 feet. apart so as to provide a certain transmission of the strain across the building and assure the resistance of the structure as a whole under the action of eccentric loads and pressures.
"At about every 25 feet in the length of the walls a vertical space of $1 / 8$ of an inch was made, extending from top to bottom and separating the wall into distinct sections. At each of these joints a twisted $3 / 4$-inch rod was imbedded from top to bottom on each side of the space. Similar rods were also placed at the corners of the building. Where the vertical shrinkage joints occur in the outside walls the continuity of the structure is preserved by carrying through them horizontal Iongitudinal pieces of twisted $3 / 4$-inch square rods about 2 teet long and set about 2 feet apart throughout the height of the wall.
"The columns were built in 16 -foot sections, each section being one story in height, and were constructed by ramming the concrete inside of forms. The vertical boards composing these forms were made in short lengths, breaking joints over the cross pieces, and were placed in position as the concrete was placed in position. The forms were allowed to stand until required for another story, often remaining in position for several weeks, although it was considered that the concrete was strong enough to permit their removal when 48 hours old. The walls were laid up between vertical surfaces of plain $11 / 2$-inch plank, laid horizontally and secured by tie bolts running through the molds. The wall was built up in sections about four feet in height and the concrete was laid in continuous 6 -inch layers, extending entirely around the circumference of the wall, and was thoroughly rammed as deposited. After the concrete had set sufficiently, the bolts were loosened and the boards forming the sides of the mold were pulled up and set in position for building another zone of wall. About 35 men were at work building the walls and constructed an average of 2000 square feet a day.
"The partitions in the building are 2 inches thick and are made of solid concrete reinforced by a framework of twisted $1 / 4$-inch bars about 2 feet apart, both vertically and horizontally. The partitions were built in molds, and set so that the face comes exactly even with the edge of a shrinkage joint in the floor, and always set over a floor beam.
"The concrete was made of Atlas cement and broken basaltic rock, all of which will pass through a 2 -inch ring and most of which will pass through a I-inch ring. The unscreened rock was mixed with cement in the following proportions: For foundations, I to IO; for the walls, floors and most of the work, I to $61 / 2$; for the columns, I to 5 ; and for the lower chords of the floor beams, I to 6 , using very fine stone."

In constructing the Ingalls office building in Cincinnati, Ohio, described in Engineering News, July 30, 1903, and Engineering Record, July 18, 1903-the methods used were essentially the same as described above with a few exceptions which will be noted.
"The broken stone included the total product of the crusher and was fine enough to pass through a I-inch screen. The concrete was mixed rather wet to insure complete filling of all interstices around the bars. Enough water was used to always give a semi-fluid consistency which allowed puddling rather than ramming. It was made wetter for the columns than for the floors and girders because the bars interferred with the ramming in the molds for the columns. The columns were built in one-story lengths and the concrete was rammed in the molds in layers not more than 12 inches deep. The concrete was dumped from the floor above into the bottom of the mold. The steel rods were placed in position before the concreting was commenced, and were wired in position. A force of 28 men working with hoisting machines and wheelbarrows placed about 100 cubic yards of concrete in a day."

The present tendency in concrete building construction is toward the use of a concrete made of Portland cement and finely crushed stone, mixed very wet and deposited in the molds practically without ramming. The concrete must be rich in cement to make a good wall ur: der these conditions.

Surface Finish.-Where it is desired to imitate stonework, imitation joints are formed in the face of the wall and the surface is either picked while the concrete is yet tender or is tooled after the concrete has hardened. Bush hammering of concrete walls can be done by an ordinary workman for from $\mathrm{I} 1 / 2$ to 2 cts . per sq. ft. Where the concrete is coarse a coating of cement mortar may be applied as the concrete is placed in the molds by means of a piece of sheet steel placed from I to 2 inches from the forms; the cement mortar, usually made of I part Portland cement and 2 parts sand, is then rammed into the vacant space, after the main body of the concrete has been rammed in place, and the piece of sheet steel is removed.

The preparation of the forms requires considerable study to obtain a smooth surface and unbroken corners. The use of matched or tongued-and-grooved stuff is not desirable as the concrete fills the openings made by shrinkage and there is no room to expand. Unmatched boards dry apart and let the water in the concrete leak out, carrying with it some of the cement. The best way to build the forms is to use narrow stuff and bevel one edge of the boards; the sharp edge of the bevel lying against the square edge of the adjoining board allows the edge to crush when swelling and closes up the joint. A coat of soft soap applied to the forms before filling, prevents the concrete from adhering. The soap should be scraped and brushed off with a steel brush as the forms are removed.

For description of concrete round house at Moose Jaw, Canada, see Part IV.

## CHAPTER XXI.

## Foundations.

Introduction.-The design of the foundations for mill buildings is ordinarily a simple matter for the reason that the buildings are usually located on solid ground and the loads on the columns are small. Where the soil is treacherous or when an attempt is made to fix the columns at the base the problem may, however, become quite complicated.

Bearing Power of Soils.-The bearing power of a soil depends upon the character of the soil, its freedom from water, and its lateral support. The downward pressure of the surrounding soil prevents lateral displacement of the material under the foundation and adds materially to the bearing power of treacherous soils.

The safe bearing power of soils given in Table XXIII may be used as an aid to the judgment in determining on a safe load for a foundation. However no important foundations should be built without making careful soundings and bearing tests.

A soil incapable of supporting the required loads may have its supporting power increased (I) by increasing the depth of the foundation; (2) by draining the site; (3) by compacting the soil ; (4) by adding a layer of sand or gravel ; (5) by using timber grillage to increase the bearing area; (6) by driving piles through the soft stratum, or far enough into it to support the loads.

A method used in France for compacting foundations is to drive holes with a heavy metal plunger and then fill these holes with closely rammed sand or gravel.

Several kinds of patented concrete piles are now in use to a limited extent in this country for building foundations.

## TABLE XXIII.

Safe bearing power of solls.*


When foundations are placed on solid rock, the surface of the rock should be carefully cleaned of loose and rotten rock and roughly brought to a surface as nearly perpendicular to the direction of the pressure as practicable. A layer of cement mortar placed directly on the rock surface will assist in bonding the foundations and the footing together.

When foundations are placed on sand, gravel or clay it is usually only necessary to dig a trench and start the foundation below frost. If the soil is somewhat yielding or if the load is heavy the foundation should be carried to a greater depth or the footings should be made wider than for greater depths.

Bearing Power of Piles.-Probably no subject has been more freely discussed and with more conflicting views and opinions than has the safe bearing power of piles. The safe load to put on a pile in any particular case is dependent upon so many conditions that any formula for the safe bearing power is necessarily simply an aid to the judgment of the engineer, and not an infallible rule to be blindly followed. All

[^10]formulas for the bearing power of piles determine the safe bearing power from the weight of the hammer, the length of free fall of the hammer, and the penetration of the pile. The penetration of the pile for any blow of the hammer depends on the condition of the head of the pile, upon whether the pile is driving straight, and upon the rigidity of the pile. The penetration of a slim, limber pile with a broomed head is very misleading, and any formula will give values too large.

The Engineering News formula for the safc bearing power of piles is most used and is certainly the most reliable. It is

$$
P=\frac{2 W h}{s+1}
$$

where $P=$ safe load on pile in tons;
$W=$ weight of hammer in tons;
$h=$ distance of free fall of the hammer in feet;
$s=$ penetration of the pile for the last blow in inches.
If the pile is driven with a steam hammer the factor unity in the denominator is changed to one-tenth. This formula is supposed to give a factor of safety of about 6 , and has been shown by actual use to give values that are safe.

Where piles are to be driven through gravel or very hard ground the lower ends are often protected with cast iron or steel points. The value of these points is questionable and most engineers now prefer to drive piles without their use, ṣimply making a very blunt point on the pile. In driving piles, care must be used where small penetrations are obtained not to smash or shiver the pile. Piles driven to a good refusal with a penetration of, say, I inch for the last blow, with a fall of 20 ft . and a $2000-\mathrm{lb}$. hammer will safely support almost any load that can be put on them.

Piles are usually driven at about $3-\mathrm{ft}$. centers over the bottom of the foundation. After the piles are driven they are sawed off below the water level and (I) concrete is deposited around the heads of the piles, or (2) a grillage or platform is built on top of the piles to support the walls
or piers. The first nethod is now the most common one for mill building foundations.

Pressure of Walls on Foundations.-In Fig. 133, let $W=$ resultant weight of the wall, the footing and the load on the wall, $l=$ length of the footing and $b=$ distance from center of gravity of footing to point of application of load $W$, and let the wall be of unit


Fig. 133.


Fig. 134.
length. The pressure on the footing will be that due to direct load $W$, and a couple with an arm $b$ and a moment $=+W b$. The pressure due to the direct $W$ will be

$$
P_{1}=W \div l \quad \text { as shown in (a) }
$$

and the maximum pressure due to the bending moment, $M=+W b$, will be

$$
P_{2}=\frac{M c}{l}=\frac{6 W b}{l^{2}}
$$

The pressure at $A$ will be

$$
\begin{equation*}
P=P_{1}+P_{2}=\frac{W}{l}+\frac{6 W b}{b^{2}} \tag{83}
\end{equation*}
$$

and at $B$ will be

$$
\begin{equation*}
P=P_{1}-P_{2}=\frac{W}{l}-\frac{6 W b}{l^{2}} \tag{84}
\end{equation*}
$$

as shown in (c).
Now if $P_{1}$ is made equal to $P_{2}$ the pressure at $B$ will be zero and at $A$ will be twice the average pressure. Placing $P_{1}=P_{2}$ in (84) and solving for $b$, we have $b=1 / 6 l$. This leads to the theory of the middle third or kern of a section. If the point of application of the load never falls outside of the middle third there will be no tension in the masonry or between the masonry and foundation, and the maximum compression will never be more than twice the average shown in (a).

If the point of application of the load falls outside the middle third ( $b$ greater than $1 / 6 l$ ) there will be tension at $B$, and the compression at $A$ will be more than twice the average. But since neither the masonry nor foundation can take tension, formulas (83) and (84) will give erroneous results.

In (d) Fig. I33, assume that $b$ is greater than $1 / 6 l$, and then as above, the load $W$ will pass through the center of pressures which will vary from zero at the right to $P$ at $A$. If $3 a$ is the length of the foundation which is under pressure, then from the fundamental condition for equilibrium for translation, summation vertical forces equals zero, we will have

$$
\begin{gather*}
W=1 / 2 P 3 a \\
P=\frac{2 W}{3 a} \tag{85}
\end{gather*}
$$

Pressure of a Pier on Foundation.-In Fig. 134, let $W=$ resultant of the stresses in the column and the weight of the pier, $l=$ length, $c=$ depth and $n=$ the breadth of the footing of the pier in feet. The bending moment at the top of the pier is $M=-1 / 2 H d$ and at the base of the pier is $M_{1}=-H(1 / 2 d+c)$. Now the pier must be designed so the maximum pressure on the foundation due to $W$ and the bending moment $M_{1}$ will not exceed the allowable pressure. The maximum pressure on the foundation will be

$$
\begin{align*}
P & =P_{1} \pm P_{2}=\frac{W}{l n} \pm \frac{M_{1} y}{I} \\
& =\frac{W}{l n} \pm \frac{H\left(\frac{d}{2}+c\right) \frac{l}{2}}{\frac{1}{12} n l^{3}} \\
& =\frac{W}{l n} \pm \frac{3 H(d+2 c)}{n l^{2}} \tag{86}
\end{align*}
$$

It will be seen from (86) that a shallow pier with a long base is most economical.

To find the relations between $l$ and $c$ when the maximum pressure is twice the average, place
and

$$
\frac{W}{l n}=\frac{3 H(d+2 c)}{n l^{2}}
$$

$$
\begin{equation*}
l=\frac{3 H(d+2 c)}{W} \tag{8}
\end{equation*}
$$

For any given conditions the value of $l$ that will be a minimum may be found by substituting in the second member of (87).

To illustrate the method of calculating the size of a pier we will calculate the pier required to fix the leeward column in Fig. 57.

The sum of the stresses in column $A-17$ is a minimum for dead and wind load and will be (Table V) equal to $4800+4500=$ 9300 lbs .

Try a pier $3^{\prime} 0^{\prime \prime} \times 3^{\prime} 0^{\prime \prime}$ on top, $6^{\prime} 0^{\prime \prime} \times 6^{\prime} 0^{\prime \prime}$ on the base and 6 feet deep, weighing about $16,700 \mathrm{lbs}$.

Substituting in (86) we have.

$$
\begin{aligned}
P & =\frac{26,000}{36} \pm \frac{3 \times 4300(14+12)}{6 \times 36} \\
& =722 \pm 1553
\end{aligned}
$$

This gives tension on the windward side which will not do, and so we will reinforce the footing with beams and make $l=10 \mathrm{ft}$., and increasing weight so that $\mathrm{W}=40800 \mathrm{lbs}$.

$$
\begin{aligned}
P & =680 \pm 559 \\
& =1239 \text { or } 121 \mathrm{lbs} . \text { per square foot, which }
\end{aligned}
$$

is safe for ordinary soils.
If it had been necessary to drive piles for this pier, a small amount of tension might have been allowed on the windward side if the tops of the piles had been enclosed in concrete.

Design of Footings.-The thickness and length of the offsets in a concrete or masonry footing are commonly calculated as for a beam fixed at one end and loaded with a uniform load over the projecting part equal to the maximum pressure on the footing. If $p=$ projection of the footing in inches; $t=$ the thickness of the footing in inches ; $P=$ pressure on foundation in pounds per sq. ft.; and $S=$ safe working load of the material of which the footing is made in pounds per square inch, by substituting in the fundamental formula for flexure and solving for $p$,

$$
\begin{equation*}
p=4 t \sqrt{\frac{3 S}{P}} \tag{88}
\end{equation*}
$$

The values of $S$ in common use are: firct class Portland cement concrete 50 lbs . ; ordinary concrete 30 lbs . ; limestone 150 lbs ; granite 18 olbs ; brickwork in cement 50 lbs .

The projection and thickness of the footing course is sometimes calculated on the assumption that the footing course is a beam fixed at the center, in place of as above. This solution hardly appears to be justified.

Pressure of Column on Masonry.-The following pressures in pounds per square inch are allowed by the building laws of New York.-Portland cement concrete 230 lbs .; Rosendale cement concrete I25 lbs.; Rubble stonework laid in Portland cement mortar i40 lbs.; brickwork laid in Portland cement mortar 250 lbs.; brickwork laid in lime mortar IIo lbs.; granite 1000 lbs . ; limestone 700 lbs . It is very com. mon to specify 250 lbs . per square inch for bearing on good Portland cement pedestals, and 300 lbs . per square inch is not uncommon.
Allowable Pressures.-The following unit pressures have been proposed by Mr. C. C. Schneider in " Structural Design of Buildings." *
I. Foundations.-Pressure on foundations not to exceed, in tons per square foot:
Soft clay ..... I
Ordinary clay and dry sand mixed with clay ..... 2
Dry sand and dry clay ..... 3
Hard clay and firm, coarse sand ..... 4
Firm, coarse sand and gravel ..... 6
2. Masonry.-Working pressure in masonry not to exceed, in tons per square foot:
Common brick, Rosendale-cement mortar ..... 10
" " Portland-cement mortar ..... 12
Hard-burned brick, Portland-cement mortar ..... 15
Rubble masoriry, Rosendale-cement mortar ..... 8
" " Portland-cement mortar ..... ıо
Coursed rubble, Portland-cement mortar ..... 12
First-class masonry, sandstone ..... 20
" " " limestone ..... 25
granite ..... 30
Concrete for walls:
Portland cement I-2-5 ..... 20
" " I-2-4 ..... 25
3. Pressure on Wall-Plates.-The pressure of beams, girders, wall plates, column bases, etc., on masonry shall not exceed the following, in pounds per square inch.
On brickwork with cement mortar. ..... 200
" rubble masonry with cement mortar ..... 200
" Portland-cement concrete ..... 350
" first-class sandstone ..... 400
" " " limestone ..... 500
" " " granite ..... 600
4. Bearing Power of Piles.-The maximum load carried by any pile shall not exceed $40,000 \mathrm{lbs}$., or 600 lbs . per sq. in. of its average cross-sections.

[^11]Piles driven in firm soil to rock may be loaded to the above limits. Piles driven through loose, wet soil to solid rock or equivalent bearing shall be figured as columns with a maximum unit strain of 600 lbs . per sq. in., properly reduced.

The minimum distance between centers of piles shall be $21 / 2 \mathrm{ft}$.
5. Loads on Fóundations.-The live loads on foundations shall be assumed to be the same as for the footings of columns. The areas of the bases of the foundations shall be proportioned for the dead load only. That foundation which receives the largest ratio of live to dead load shall be selected and proportioned for the combined dead and live loads. The dead load on this foundation shall be divided by the area thus found, and this reduced pressure per square foot shall be the permissible working pressure to be used for the dead load of all foundations.
6. Reduction of Live Load on Columns.-For columns carrying more than five floors, these live loads may be reduced as follows:

For columns supporting the roof and top floor, no reductions; For columns supporting each succeeding floor, a reduction of 5 per cent of the total live load may be made until 50 per cent is reached, which reduced load shall be used for the columns supporting all remaining floors.

## CHAPTER XXII.

## Filoors.

Introduction.-The requirements and the local conditions governing the design of floors for shops and mills are so varied and diversified that the subject of floor design can be treated only in a general way. Floors will be discussed under the head of (1) ground floors and (2) floors above ground.

GROUND FLOORS.-Types of Floors.-There are three general types of ground floors in use in mills and shops: (I) solid heat conducting floors as stone, brick or concrete; (2) semi-elastic, semiheat conducting floors as earth, macadam or asphalt; (3) elastic nonheat conducting floors of wood or with a wooden wearing surface.
(I) Floors of the first class have been used in Europe and formerly in this country to quite an extent in shops and mills, and at present are much used in round houses, smelters, foundries and in other buildings where the wear and tear are considerable or where men are not required to stand alongside a machine. Floors of this class are cold and damp and make workmen uncomfortable. The wooden shoes of the continental workmen or the wooden platforms in use in many of our shops which have floors of this class, overcome the above objections to some extent. The gritty dust arising from most concrete floors is very objectionable where delicate machinery is used. The noise and danger from breakage and first cost are additional objections to floors of this class.
(2) Floors of this class have many of the objections and defects of floors of the first class. These floors are liable to be cold and damp unless properly drained, and give rise to a gritty dust that is often intolerable in a machine shop.

Earth and cinder floors are very cheap and are adapted to forge shops and many other places where concrete and brick floors are now put down. Floors of this class should be well tamped in layers and should be carefully drained. Tar-concrete and asphalt floors are more elastic and conduct less heat than any of the floors above mentioned, but the surface is not sufficiently stable to support machinery directly, and floors of this class are very much improved by the addition of a continuous wooden wearing surface.
(3) Floors of wood or with a wooden wearing surface appear to be the most desirable for shops, mills and factories. Wooden floors are elastic, non-heat conducting and are pleasant to work on. They are cheap, easily laid, repaired and renewed. They are easily kept clean and do not give rise to grit and dust.

The most satisfactory wearing surface on a wooden floor is rock maple $7 / 8$ to $11 / 4$ inches thick and $21 / 2$ to 4 inches wide, matched or not as desired. The matched flooring makes a somewhat smoother floor and is on the whole the most satisfactory. The wearing floor should be laid to break joints and should be nailed to planking or stringers laid at right angles to the surface layer. The thickness of the planking will depend upon the foundation and upon the use to which the floor is to be put.

The different classes of floors will now be briefly discussed and illustrated by examples of floors in use.

Cement Floors.-The construction of cement or concrete floors is similar to the construction of cement sidewalks, the only difference being that the floor usually requires the better foundation. The foundation will depend upon the use to which the floor is to be put, and upon the character of the material upon which the foundation is to rest. The excavation should be made to solid ground or until there is depth enough to allow a sub-foundation of gravel or cinders. Upon this base a layer of cinders or gravel 6 to 8 inches thick is placed and thoroughly rammed. The cement concrete base, made of I part Portland cement, 3 parts sand and 5 to 6 parts broken stone or gravel, is then placed on
the sub-foundation and thoroughly rammed. The cement and sand should be mixed dry until the mixture is of a uniform color, the gravel or broken stone is then added, having previously been wet down, and the concrete is thoroughly mixed, sufficient water being added during the process of mixing to make a moderately wet concrete. The concrete is of the proper consistency if the moisture will just flush to the top when the concrete is thoroughly rammed. The concrete should be mixed until the ingredients are thoroughly incorporated and each particle of the aggregate is thoroughly coated with mortar.

The wearing coat is usually made of I part Portland cement and one or two parts of clean sharp sand or granite screenings that will pass through a $1 / 4$-inch screen. The thickness of the wearing coat will depend upon the wear, and varies from $1 / 2$ to 2 inches thick, I inch being a very common thickness. The mortar for the wearing surface should be rather dry and should be applied before the cement in the concrete base has begun to set. Care should be used to see that there is not a layer of water on the upper surface of the base or that a film of clay washed out of the sand or gravel has nct been deposited on the surface, for either will make a line of separation between the base and the wearing surface. The mortar is brought to a uniform surface with a straight edge, and is rubbed and compressed with a float to expel the water and air bubbles. As the cement sets it is rubbed smooth with a plastering trowel. Joints should be formed in the floor making it into blocks about 4 to 8 feet square.

Cement floors are said to be a failure for railway round houses for the reason that they flake and crack after they have been used a short time, on account of the varying changes to which they are subjected.

Cement floors vary in cost, depending upon the thickness of the floor and upon local conditions. In central Illinois a cement floor having a 1 -inch surface coat and 3 inches of concrete laid on a cinder foundation 6 to 8 inches thick can be obtained (1903) for about 12 cents per square foot. A very substantial concrete floor can usually be obtained for about 20 cents per square foot.

Tar Concrete Floors.-The following specifications for tar concrete floors are given in circulars Nos. 54 and 55 of the Boston Manufacturer's Mutual Fire Insurance Co., and are reprinted in Engineering News, March 21, 1895.
"The floor to be 6 inches thick, and to be put down as follows: The lower 5 inches to be of clean coarse gravel or broken stone, with sufficient fine gravel to nearly fill the voids, thoroughly coated with coal-tar and well rammed into place. On this place a layer I inch thick of clean, fine gravel and sand heated and thoroughly coated with a mixture of coal-tar and coal-tar pitch in the proportions of I part of pitch and 2 parts of tar. This layer is to be rolled with a heavy roller and brought to a true and level surface ready to receive the floor plank. No sand or gravel to be used while wet.
"A floor of the kind above specified should always be protected by a floor of wood over it, and the plank should be laid and bedded in the top surface while it is warm and before it becomes hard.
"For light work the thickness of the lower layer of concrete may be reduced one or more inches if upon a dry gravelly or sandy soil. For storage purposes where the articles stored are light and trucks are little used, the following specification has been found to give a satisfactory floor:
"The lower layer being mixed and put down as above specified, the top layer will be of fine gravel and sand, heated and thoroughly mixed with a mixture of equal parts of coal-tar, coal-tar pitch and paving cement, so that each particle of sand and gravel is completely coated with the mixture, using not less than one gallon of the mixture to each cubic foot of sand and gravel. This layer should be well rolled with a heavy roller and allowed to harden several days before being used."

Brick Floors.-Brick floors are recommended as the most satisfactory floors for round houses. Round house floors on the Boston \& Maine R. R. are made as follows: *Brick is laid flat on a 2 -inch layer of bedding sand on well compacted earth, gravel or cinders. Joints are lefi open $3 / 8$ of an inch and are swept full of cement grout.

Round house floors are made on the Chicago, Milwaukee \& St. Paul R. R., as follows: *Vitrified brick is laid on edge on a layer of sand I

[^12]to 2 inches thick on a cinder foundation 6 inches thick. Fine sand is broomed into the cracks after the brick are in place.

The cost of this floor per square yard is about as follows:
Material.
Firebox cinders cost nothing. .............. . $\$ 00.00$
Paving brick
0. 50

Labor.
Preparing the foundation ................... 0.20
Laying the brick . ........................... . 0.15
Total cost per square yard................... $\$ 0.85$
Total cost per square foot................ $9^{1 / 2}$ cents.
The cost of brick floors as given in the reports of the Association of Railway Superintendents of Bridges and Buildings varies from $91 / 2$ to 13 cents per square foot.

The Southern \& Southwestern Railway Club-Eng. News, Jan. I6, 1896-recommends that round house floors be made of vitrified brick laid as follows: Make a bed surface of slag or chert about 18 inches thick, then put a coat of sand over slag, lay brick on edge and levei them up by tamping. After this is done a coat of hot tar is applied which enters the space between the bricks and cements them together.

Wooden Floors.-Coal-tar or asphalt concrete makes the best foundation for a shop floor. If Portland cement is used, the planking will decay very rapidly unless the top of the concrete is mopped with coal-tar or asphalt. A floor laid by Pratt \& Whitney Co., of Hartford, Conn., is described as follows: "In laying a basement floor about $\mathbf{x} 8$ years since of 10,000 square feet, 8,000 square feet were laid over coaltar and pitch concrete in about equal proportions, and about 2,000 square feet were laid over cement concrete. The latter portion of the floor was removed in about ten years, the timbers and the plank being completely rotted out; while the other was in a perfect state of preservatoin and has continued so until the present time." The floor with tar concrete foundations was constructed as follows: "Excavation was made about one foot below the floor and six inches of coarse stone
was filled in, then five inches of concrete made of coarse gravel, coaltar and pitch, and finally about one inch of fine gravel tar concrete. Before the concrete was laid, heavy stakes were driven about three feet apart to which the $4^{\prime \prime} \times 4^{\prime \prime}$ floor timbers were nailed and leveled up. The concrete was then filled in around the floor timbers and thoroughly tamped. A layer of hot coal-tar was then spread on top of the concrete and the flooring was laid and nailed to the timbers. It is very essential that the gravel be perfectly dry before mixing and this is accomplished by mixing it with hot coal-tar. What is known as distilled or refined coal-tar must be used as that which comes from the gas house without being refined does not work in a very satisfactory manner."

The following paragraph is abstracted from Report No. V., Insurance Engineering Experiment Station, Boston, Mass:
"Floors over an air space or on cement are subject to a dry rot. Asphalt or coal-tar concrete is softened by oil, and the dust will wear machinery unless the concrete is covered by plank flooring. Floors made by laying sleepers on 6 inches of pebbles, tarred when hot, then 2 inches tarred sand packed flush with the top of the sleepers, and covered with a double flooring, have remained sound for 37 years. Double flooring at right angles can be laid on concrete without the use of sleepers. It is usually preferable to secure nailing strips to stakes 4 feet apart each way and driven to grade, concrete flush to top of strips, and lay $\mathrm{I} / 2$-inch flooring."

The floor shown in Fig. I35 was laid in an extensive shop on the Boston \& Maine Railway. The earth was well compacted and brought to a proper surface and a 4 -inch bed of coal-tar concrete put down in


FIG. 135.
three courses. The stones in the lower course were to be not less than I inch in diameter. Stones in each course were well sovered with tar before laying and were well tamped and rolled afterwards. The third and finishing course was composed of good clean sharp sand well dried, heated hot and mixed with pitch and tar in proper proportions. This was then carefully rolled and brought to a true level to fit a straight edge. On the finished surface of the foundation was spread a coating $1 / 4$-inch thick of best roofing pitch put on hot and into which the lower course of the plank was laid before the pitch cooled.

Care was taken to have the planks thoroughly bedded in the pitch and after laying, the joints were filled with pitch. If vacant spaces appeared under the plank, they were filled up with pitch by boring through the plank. The cost of this flooring was about 18 cents per square foot, using spruce lumber.

A cheap but serviceable floor may be made as shown in Fig. 136. The soil is excavated to a depth of 12 to 15 inches and cinders are filled in and carefully tamped. The flooring planks are nailed to the sills which are bedded in the cinders. The life of the plank flooring can be increased by putting a coating of slaked lime on top of the cinders.


Fig. 136.
The floor shown in Fig. I37 was used in the factory of the Atlas Tack Company, Fairhaven, Mass., and needs no explanation.


Fig. 137.

A very good floor for mills and factories is shown in Fig. I38.


Fig. 138.
The pitch or asphalt will prevent the decay of the plank and will add materially to the life of the floor. Maple flooring makes the best wearing surface for floors and should be used if the cost is not prohibitive.

The floor shown in Fig. I39 was constructed as follows: Two-inch plank, matched and planed on one side, were laid on $3^{\prime \prime} \times 3^{\prime \prime}$ chestnut joists. The surface of the cinders was kept $2^{\prime \prime}$ away from the wood and


Fig. 139.
this space was filled with lime mortar. After the surface of the cinders had been graded, the $3^{\prime \prime} \times 3^{\prime \prime}$ joists were held in place by stakes nailed to the joists about three feet apart. The lime mortar was then filled in around and slightly above the surface of the joists to allow for shrinkage. Before laying the floor a thin layer of slaked lime was spread over the surface. This floor in an eastern city cost about 85 cents per square yard; and has a life of io to 12 years.

Examples of Floors.-The floor of the Locomotive Shop of the A. T. \& S. F. R. R., at Topeka, Kas., is as follows: The floor foundation is formed of 6 inches of concrete resting on the natural soil well tamped. On the concrete are laid $3^{\prime \prime} \times 4^{\prime \prime}$ yellow pine stringers at 18 inch centers, the whole being covered with 2 -inch No. I hard maple, surfaced on one side and two edges and milled for $1 / 4^{\prime \prime} \times \mathrm{I}^{\prime \prime}$ pine splines.

The flooring in the Great Northern Shops at St. Paul, Minn., is $3^{\prime \prime} \times 12^{\prime \prime}$ plank on $6^{\prime \prime} \times 8^{\prime \prime}$ sleepers bedded in 18 inches dry sand filling.

The floor of the locomotive shops of the Philadelphia and Reading R. R., is made of bituminous concrete on which are a solid course of $3^{\prime \prime} \times 8^{\prime \prime}$ hemlock and a top wearing surface of $11 / 8^{\prime \prime} \times 4^{\prime \prime}$ maple.

The machine shop floors of the Lehigh Valley R. R. at Sayre Pa., are of concrete with a maple wearing surface in the high grade buildings and yellow pine in the others.

The Southern Railway has a vitrified brick floor in a round house at Knoxville, Tenn., which is giving good satisfaction. The cost of this floor was about $\$ 1.00$ per square yard.

Shop floors for the American Locomotive Works, Schenectady, N. Y., are described in Engineering Record, May 30, 1903 , as follows:
"On a sand fill was laid from 4 to 6 inches of $21 / 2$-inch broken stone, rammed dry and then flushed with about one gallon of hot tar for every square yard of floor. This course was covered with 2 inches of hot sand and tar mixed to the consistency of dry mortar, shoveled into place and thoroughly rammed to a level surface. Spiking strips made of $3^{\prime \prime} \times 4^{\prime \prime}$ timbers were imbedded in the sand at about $3-\mathrm{ft}$. centers. To these strips were spiked $2-\mathrm{in}$. rough hemlock planks, which were in turn covered with transverse tongued and grooved $7 / 8-\mathrm{in}$. maple boards 4 inches wide."

Cedar Blocks form a neat, clean and durable floor. Care should be used where heavy jacking is to be done on wooden block floor that the blocks are not forced down through the plank foundation.

A cedar block floor in the Chicago Ave. round house of the C \& N. W. R. R., laid on planks on a gravel foundation cost about II cents per square foot.
*A cedar block floor on the C. \& E. I. R. R., laid directly on a gravel foundation cost 8 cents per square foot.
*A floor constructed of 6 to 8 -inch blocks sawed from old bridge timbers, set on 2 -inch hemlock plank, which in turn rested on 3 inches

[^13]of dry gravel or sand, has been used on the Ashland division of the C. \& N. W. R. R., and cost about 4 cents per square foot exclusive of the cost of the old timbers. This floor has proved to be quite satisfactory.

FLOORS ABOVE GROUND.-The type of floor used for the upper stories of mill buildings will depend upon the character of the structure and the use to which the floor is to be put. In fireproof buildings the floors should preferably be constructed of fireproof materials, although there is comparatively little risk from fire under ordinary conditions with a heavy plank floor. Where the load on the floor is very heavy some form of trough or buckled plate floor is very often used.

Timber Upper Floors.-Where steel floor beams are used the floor is often made by placing $2^{\prime \prime} \times 6^{\prime \prime}$ or $2^{\prime \prime} \times 8^{\prime \prime}$ planks on edge and spiking them together, the wearing surface being made of hard wood boards. Where there is much danger from fire this floor can be fireproofed by plastering it below with wire lath and hard plaster and by putting a layer of cement or lime mortar between the plank and the wearing surface. The upper surface is also sometimes finished with a wearing coat of cement or asphalt.

The standard floor recommended by the Boston Manufacturer's Mutual Fire Insurance Co., for mill buildings constructed of heavy timbers, calls for a layer of spruce plank, generally 3 inches thick, laid to cover two floor beam spaces and breaking joints every 3 feet; on this are laid 3 thicknesses of rosin sized paper, each layer being mopped with tar. The top floor is $1 \mathrm{I} / 8-\mathrm{in}$. hard wood, preferably maple. The main beams are spaced 8 to io feet. "The floor is smoother if laid across the line of the plank in the under floor, but traveling loads are better distributed when moved in and out of the store house if the top floor is laid parallel to the lower plank."

Brick Arch Floor.-The brick arch floor shown in Fig. 140 was formerly much used in fireproof buildings and is still used to some extent in mills and factories. The arch is commonly made of a single


Brick Arch Construction
Fig. 140.
layer of brick about 4 inches thick, with a span of 4 to 8 feet and a center rise of preferably not less than $1 / 8$ the span. The space above the brick arch is filled with concrete and a wearing floor is nailed to strips imbedded in the surface of the concrete. The most desirable span is from 4 to 6 feet. Tie rods are commonly placed at about $1 / 3$ the height of the beam and are spaced from 4 to 6 feet apart. The thrust of the arch per lineal foot can be found by the formula

$$
T=\frac{1.5 W L^{2}}{K}
$$

where $T=$ thrust of arch in lbs. per lineal foot;
$W=$ load on arch in lbs. per square foot;
$L=$ span of the arch in feet;
$R=$ rise of arch in inches.
The weight of this floor is about 75 lbs . per square foot.
Corrugated Iron Arch Floor.-The corrugated iron arch shown in Fig. 14I makes a very strong floor for shops and mills. The corrugated iron acts as a center for the concrete filling above it, and in connection with the concrete makes a composite arch. The corrugated iron or steel is ordinarily the standard $21 / 2$-inch corrugations, and the gages are Nos. 16,18 or 20 , depending upon the load and the length of span. The rise of the arch should not be less than I-12 the span and


Corrugated Iron Arch
Fig. I4I.
should have a thickness of from 2 to 4 inches of concrete over the center of the arch. Beams are spaced from 4 to 7 feet apart for this floor, and tie rods are used as in the brick arch floor.

Expanded Metal Floors.-The floor shown in Fig. 142 is constructed as follows: A wood centering is suspended from the beams, with the upper surface of the centering about I inch below the top of the beams, a layer of expanded metal is stretched across the beam in sheets and the concrete is spread over and tamped so that the expanded metal becomes imbedded in the lower inch of the concrete. The


Fig. 142.
concrete is usually made of I part Portland cement, 2 parts sand and 6 parts cinders, and weighs 80 to 90 pounds per cubic foot. Beams were formerly spaced from 5 to 8 feet apart, but have recently been spaced much farther; spacings as wide as 18 to 20 feet having been successfully employed. Expanded metal with 3 -inch mesh cut from No. 10 gage sheet steel is commonly used for floors, which are made from 3 to 5 or 6 inches thick. For the design of expanded metal and other forms of reinforced concrete floors, see the author's "The Design of Highway Bridges." The companies controlling the patents on this material will furnish gratis, data and tables for the design of expanded metal floors. Examples of floors may be found by consulting the Engineering News, Engineering Record, etc.

Expanded metal floors are also made as shown in Fig. 143. This type is adapted to very heavy floor loads. The arch should have a rise


Fig. 143.
of $I-10$ to $I / 8$ the span. Tests have shown that the steel work in expanded metal floors is not ordinarily affected by the cinder concrete. If care is used when erecting the floor to coat the expanded metal with a coating of Portland cement mortar before the metal has become rusted. the protection against corrosion will be almost perfect.

Roebling Floor.-The floor shown in (c) Fig. 144 consists of a wire cloth arch, stiffened by woven-in stiff steel rods $3 / 8$ to 1 -inch in diameter, at about 9 -inch centers, which is sprung between the floor beams and abuts on the seat formed by the lower edge of the floor beam.


Fig. 144.
On this wire centering Portland cement concrete is filled in and is finished with a wearing coat of cement or a wooden floor as shown. The beams are held in position by $3 / 4$ or $7 / 8$-inch tie rods, placed from 4 to

6 feet apart. The concrete is commonly composed of I part Portland cement, $21 / 2$ parts sand and 6 parts clean cinders, and is laid with a thickness of not less than 3 inches over the crown of the arch. The weights and safe loads for floors constructed on this system are given in the manufacturer's catalog.

The Roebling Construction Company also makes a floor with flat construction as follows: A light framework is made of flat steel bars set on edge and spaced 16 -inch centers, with $1 / 4$-turn at both ends where the bars rest on the steel beams; braces of half round iron are spaced at intervals to brace the bars. The Roebling standard lathing with $1 / 4$-inch steel stiffening ribs woven in every $71 / 2$ inches, is then applied to the under side of the bars and laced to them at each intersection. On this wire lathing cinder concrete from 3 to 4 inches thick is deposited.
"Buckeye" Fireproof Flooring.-The steel flooring shown in (a) Fig. 144 is manufactured by the Youngstown Iron \& Stet! Roofing Co., Youngstown, Ohio. This floor is made in two sizes, one for bridge floors and the other for building floors. The flooring shown in (a) is for buildings, is made in sections of four triangles each in lengths up to 10 feet, and will lay a width of 21 inches. Each triangle is $51 / 4$ inches wide and $21 / 2$ inches deep. The flooring when complete with a concrete filling and a $11 / 2$-inch wearing surface will weigh from 32 to 35 pounds per square foot. The weights of the metal troughs laid in place are given in the following table:

Weights of metal troughs $21 / 2$ inches deep by $51 / 4$ inches wide, INCLUDING SIDE LAPS.
GALVANIZED TROUGHS. BLACK IRON TROUGHS.

| No. $16-386$ | lbs. | per | 100 | square | feet. | No. $16-363$ | lbs. | per | 100 | square | feet. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. 17-350 | " | " | " | " | " | No. $17-327$ | " | " | " | " | " |
| No. 18-313 | " | " | " | " | " | No. $18-290$ | " | " | " | " | " |
| No. $19-278$ | ". | " | " | " | " | No. $19-254$ | " | " | " | " | " |
| No. $20-241$ | " | " | " | " | " | No. $20-218$ | " | " | " | " | " |
| No. $22-204$ | " | " | " | " | " | No. $22-181$ | " | " | " | " | " |
| No. $24-168$ | " | " | " | " | " | No. $24-145$ | " | " | " | " | " |

The safe loads in addition to the weight of the floor as given in the manufacturer's catalog are given in the following table:

| Span. | No. 18 Gage. | No. 20 Gage. | No. 22 Gage. | No. 24 Gage. |
| :---: | :---: | :---: | :---: | :---: |
| 3 ft . 0 in . | 1050 lbs . | S00 lbs. | 580 lbs . | 450 lbs . |
| 3 " 6 " | 820 " | 570 " | 425 " | 320 " |
| 4 "0 | 675 " | 425 | 315 " | 230 " |
| 4 " 6 " | 570 | 320 | 240 | 190 * |
| 5 " 0 | 475 | 250 | 180 | 135 " |
| 5 " 6 " | 200 " | 200 | 140 |  |

Multiplex Steel Floor.-The steel flooring shown in (b) Fig. 144, is manufactured by the Berger Mfg. Co., Canton, Ohio. This floor is made with corrugations from 2 to 4 inches deep and of Nos. 16, 18, 20 and 24 gage steel. The triangles are filled with concrete and the floor is given a cement finish, or is covered with a wooden wearing surface. Tables of safe loads for Multiplex Steel Floor are given in the manufacturer's catalog, and are larger than for the "Buckeye" Flooring for the same span.

Ferroinclave.-Ferroinclave is fully described in Chapter XIX. It has been used by the Brown Hoisting Company for floors as well as for roofing and siding. It should make a very satisfactory flooring where light loads are to be carried.

Corrugated Flooring.-Corrugated flooring or trough plates shown in (a) and (b) Fig. 145, are used for fireproof floors where extra heavy loads are to be carried in mill buildings, in train sheds and for bridge floors. The troughs are filled with concrete, which is given a finishing coat of cement and sand or is covered with a plank floor; the planks being laid directly on the plates or spiked to spiking pieces imbedded in the filling. The details, weights and safe loads for corrugated plates are given in Pencoyd Iron Works' handbook, in Carnegie Steel Company's handbook, and in Trautwine's Pocket-book. Details of corrugated plates are also given in the American Bridge Company's "Standards for Structural Details."

Corrugated flooring or trough plates are usually very hard to get and the Z-bar and plate floor shown in (c) Fig. 145, and the angle and


Fig. 145.
plate floor shown in (d) are substituted. The details, weights and safe loads for Z-bar and plate flooring are given in the handbooks above named. Angle and plate flooring is made of equal legged angles and plates, and the safe loads are not given in the handbooks but must be calculated. The moment of inertia, $I$, of a section of flooring containing two angles and two plates is given by the formula

$$
I=2 I^{\prime}+2 A d^{2}+2 I^{\prime \prime}
$$

where $I^{\prime}=$ moment of inertia of one angle about an axis through the center of gravity of the angle parallel to the neutral axis of the flooring;
$A=$ area of one angle;
$d=$ distance from center of gravity of the angle to the neutral axis of the flooring ;
$I^{\prime \prime}=$ moment of inertia of the plate about the neutral axis.
The properties of the angles required in the calculations may be cbtained from the handbooks, and $I^{\prime \prime}$ is equal to one-half the sum of the moments of inertia of the plate about its long and its short diametersince the sum of the moments of inertia about any pair of rectangular axes is a constant.

Buckled Plates.-Buckled plates are made from soft steel plates from 3 to 5 feet wide, and are from $1 / 4$ to 7 -16 inches thick. Buckled plates are made in lengths having from one to 15 buckles or domes in one plate. Buckles vary in depth from 2 to $31 / 2$ inches, however, different depths should not be used in the same plate. Buckled plates are usually supported along the edges and the ends and are bolted to the floor beams. The details, weights and safe loads are given in the handbooks named above and in the Passaic Steel Company's handbook. The
buckled plates are covered with concrete, which is given a finishing coat of cement or is covered with plank flooring.

Steel Plate Flooring.-Fireproof floors around smelters, etc., are often made of steel plates. Flat steel plates do not make a very satisfactory floor for the reasons that the plates will bulge up in the center when fastened around the edges, and because they become dangerously smooth.

Neverslip Wrought Steel Floor Plates are made from $24^{\prime \prime} \times 72^{\prime \prime}$ to $36^{\prime \prime}$ $\times 120^{\prime \prime}$, and from $3-16^{\prime \prime}$ to $I^{\prime \prime}$ thick. These plates are designed to take the place of the cast iron checkered plates formerly used for floors, weigh about 50 per cent less and last much longer. The stock sizes, weights and safe loads for Neverslip floor plates are given in the Stock List of the Scully Steel Co., Chicago. These lists are issued about six times a year and will be sent free upon request.

Thickness of Timber Flooring.-The thickness of white pine and spruce flooring for different spans and loads is given in Table XXXIIIa. The following fibre stresses were used in calculating the thickness: Transverse bending, 1000 lb .; end bearing, 1000 lb .; bear ing across the fibre, 200 lb .; shear along the fibre, 100 lb .

## TABLE XXXIIIa.

Thickness of spruce and white pine plank for floors.

| $\begin{aligned} & \text { Span in } \\ & \text { Feet. } \end{aligned}$ | Thickness, in Inches, for Various Loads per Square Foot of Plank. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | lb. 30 | $\mathrm{l}_{40}$ | ${ }_{50}^{\mathrm{lb} .}$ | ${ }_{75}^{\mathbf{l b}_{5}}$ | $\begin{aligned} & 1 \mathrm{~b} . \\ & 100 \end{aligned}$ | $\begin{aligned} & 125 \\ & 125 \end{aligned}$ | $\begin{aligned} & \text { lb. } \\ & 150 \end{aligned}$ | $\begin{aligned} & \text { lb. } \\ & 175 \end{aligned}$ | lb. <br> 200 | $\frac{1 \mathrm{~b}}{225}$ | $\mathrm{lb} .$ | $\begin{aligned} & \text { lb. } \\ & 275 . \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~b} . \\ & 300 \end{aligned}$ | lb. <br> 325 | ${ }_{350}^{\mathrm{lb}}$ | lb. 375 | $\begin{aligned} & \mathrm{lb} \\ & 400 \end{aligned}$ |
| 4. | 0.9 | 1.1 | 1.2 | 1.5 | 1.7 | 1.9 | 2.1 | 2.2 | 2.4 | 2.5 | 2.7 | 2.8 | 2.9 | 3.1 | 3.2 | 3.3 | 3.4 |
|  | 1.2 | 1.4 | 1.5 | 1.9 | 2.1 | 2.4 | 2.6 | 2.8 | 3.0 | 3.2 | 3.4 | 3.5 | 3.7 | 3.8 | 4.0 | 4.1 | 4.3 |
| 6 | 1.4 | 1.6 | 1.8 | 2.2 | 2.6 | 2.9 | 3.1 | 3.4 | 3.6 | 3.8 | 4.0 | 4.2 | 4.4 | 4.6 | 4.8 | 4.9 | 5.1 |
|  | 1.7 | 1.9 | 2.1 | 2.6 | 3.0 | 3.3 | 3.7 | 3.9 | 4.2 | 4.5 | 4.7 | 4.9 | 5.2 | 5.4 | 5.6 | 5.8 | 6.0 |
| 8. | 1.9 | 2.2 | 2.4 | 3.0 | 3.4 | 3.8 | 4.4 | 4.5 | 4.8 | 5.1 | 5.4 | 5.7 | 5.9 | 6.1 |  |  |  |
| 9 | 2.1 | 2.5 | 2.7 | 3.4 | 3.9 | 4.3 | 4.7 | 5.1 | 5.4 | 5.8 | 6.1 |  |  |  |  |  |  |
| 10. | 2.4 | 2.7 | 3.1 | 3.7 | 4.3 | 4.8 | 5.2 | 5.6 | 6.0 |  |  |  |  |  |  |  |  |
| 11. | 2.6 | 3.0 | 3.4 | 4.1 | 4.7 | 5.3 | 5.8 |  |  |  |  |  |  |  |  |  |  |
| 12. | 2.9 | 3.3 | 3.7 | 4.5 | 5.2 |  |  |  |  |  |  |  |  |  |  |  |  |
| 13. | 3.1 | 3.6 | 4.0 | 4.9 | 5.6 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3.4 | 3.9 | 4.3 | 5.3 | 6.1 |  |  |  |  |  |  |  |  |  |  |  |  |

For yellow pine use nine-tenths of the above thicknesses.

## CHAPTER XXIII.

## Windows and Skylights.

Glazing.-For glazing windows and skylights, two substances, glass and translucent fabric are in common use.

GLASS.-The principal kinds of glass used in windows and skylights are (I) plane or sheet glass ; (2) rough plate or hammered glass; (3) ribbed or corrugated glass; (4) maze glass ; (5) wire glass-glass with wire netting pressed into it ; (6) ribbed wire glass; and (7) prisms.
(1) Plane Glass.-Plane or common window glass is technically known as sheet or cylinder glass. It is made by dipping a tube in molten glass and blowing the glass into a cylinder, which is then cut and pressed out flat. Without regard to quality sheet glass is divided according to thickness into "single strength" and "double strength" glass. Double strength glass is $1 / 8$-inch thick while single strength glass is about 1 -16-inch thick. In mill buildings, lights larger than $12^{\prime \prime} \times 14^{\prime \prime}$ are usually made of double strength glass. With reference to quality sheet glass is divided into three grades $\mathrm{AA}, \mathrm{A}$, and B . The AA is the best quality, the A is good quality while the B is very poor. The B grade is suitable only for stables, cellars, etc. For residences, offices, and similar purposes nothing poorer than AA should be specified. The A grade does very well for ordinary mills, although the AA grade should be used if practicable.
(2) Plate Glass.-Plate glass is made by casting and not by blowing, and is finished by grinding and polishing on both sides until a smooth surface is obtained. It is usually $1 / 4$ or $3-16$ inches thick. The price depends upon the size of the plate and the quality of the glass. The rough plate glass used in mills is not finished as carefully as for glass fronts, and it may contain many flaws that would not be allow-
able in the former case. The roughened surface of the glass prevents the entrance of direct sunlight and does away with the use of sunshades. The only value of rough plate glass is in softening the light, the loss of light in passing through it being very great.
(3) Ribbed or Corrugated Glass.-Ribbed or corrugated glass is usually smooth on one side and has 5,7 , II or 21 ribs on the other side, (a) Fig. 146. It varies in thickness and shape of ribs. "Factorv ribbed" glass with 21 ribs to the inch is distinctly the most effective.

(4) Maze Glass.-Maze glass has one side smooth and has a raised pattern on the other side roughening practically the entire surface, (b) Fig. 146. It is quite effective.
(5) Wire Glass.-Wire glass is made by pressing wire netting into the molten glass. It is made either plane or with ribs or prisms on one side. Wire glass is injured but not destroyed by the action of fire and water, and is now accepted by insurance companies as fireproof construction.
(7) Prisms.-Prisms are made in small sections which are set in a frame of lead or other metal, or are made in sheets as shown in (c) Fig. 146. Luxfer sheet prisms, manufactured by the American Luxfer Prism Co., Chicago, will be cut in any size desired up to 84 inches wide (parallel with the saw teeth) by 36 inches high.

Diffusion of Light.*-The light entering a room through a window or skylight comes for the most part from the sky and has, there-

[^14]fore, a general downward direction, varying with the time of day and the position of the window. The portion of the room which receives the most light ordinarily is the floor near the windows, but if we interpose a dispersive glass in this beam the light will no longer fall to the floor but will be spread out into a broad divergent beam falling with nearly equal intensity on walls, ceiling and floor. There is of course no gain in the total amount of light admitted, the light being simply redistributed, taking up from the floor that which fell there and was comparatively useless, and sending it where it is of more service.

Experiments have shown that the diffusion of light in a room lighted by means of windows or skylights depends upon the kind and position of the glass used. The relative intensity of the light admitted in per cents of the light outside the window for plane glass, factory ribbed glass, Luxfer and canopy prisms is shown in Fig. 147*.


Fig. I47.

Fig. 147 shows a great increase in efficiency of factory ribbed glass and prisms as the sky angle diminishes.

[^15]The equivalent areas required to give the same intensity of light with the kinds of glass shown in Fig. 147, are given in Table XXIV for sky angles of $30^{\circ}$ and $60^{\circ}$.

TABLE XXIV.
EQuivalent areas for different kinds of glass.

| Kinds of Glass. | Angle Skylight makes with the Horizontal. |  |
| :---: | :---: | :---: |
|  | $30^{\circ}$ | $60^{\circ}$ |
| Plane | 100 sq. ft. | 100 sq. ft. |
| Factory Ribbed | 25 " " | 40 " " |
| Luxfer Prisms | 17 " " | 30 " " |
| Luxfer Canopy Prisms | 13 " " |  |

The American Luxfer Prism Co., recommends that Luxfer prisms be set at an angle of about 57 degrees with the vertical when used in skylights.

Relative Value of Different Kinds of Glass.-Ground glass is of little value except as a softening medium for bright sunlight. It becomes opaque with moisture and makes an undesirable window glass. Roughened plate glass has very little value as a diffusing medium. Of the ribbed glasses, the factory ribbed glass with 21 ribs to the inch gives the widest and most uniform distribution and is distinctly the best. There is no apparent gain in corrugating both sides. Ribbed wire glass is about 20 per cent less effective than the factory ribbed glass. When a glass of a slightly better appearance than the factory ribbed glass is wanted the maze glass is the best ; the raised pattern imprinted on the back of this glass giving wide diffusion, especially in bright sunlight. The prisms are very much more effective than any of the glasses mentioned above, but their cost prevents their use under ordinary conditions.

Kind of Glass to Use.-Where the amount of skylight is large and the light is not obstructed by buildings plane glass is very satisfactory. Where a superior light is desired, or where the skylight area is less than ample, use factory ribbed glass in skylights and in the upper
panes of windows. Where the skylight area is very small, the light is obstructed, or a very superior light is desired, use prisms. Wire glass should be used where there is danger from fire and in skylights, where it removes the necessity of stretching wire netting under the glass to protect it and to prevent it from falling into the building when broken.

Placing the Glass.-Factory ribbed glass is somewhat more effective if the ribs are placed horizontal, but the lines of light deflected from the horizontal ribs may become injurious to the workmen's eyes and it is now the custom to set the ribs vertical. Ribbed glass should have the ribs on the inside for ease in keeping it clean, and where double glass is used the ribs should face each other and be crossed. Care should be used in setting thick wire glass in metal frames; the lower edge must bear directly on the frame, but the top and sides should fit loosely so that the differential expansion of the glass and frame will not crack the glass. Plane glass and small panes of other kinds of glass are set with glaziers' tacks and putty. In skylights and large windows some method must be used that will allow the glass to expand and contract freely and at the same time will be free from leakage. Several methods of glazing skylights without putty are shown in Fig. 148. Skylight bar (a) manufactured by Vaile \& Young, Baltimore Md., is made of heavy galvanized iron and lead.


Bars (b) and (c) are made of zinc or galvanized iron, supported by a steel bar. Bar (d) is adapted to small panes of glass and is made of galvanized iron; it is made water tight by the use of putty. The skylight bars in Fig. 148, all have condensation gutters to catch the moisture that leaks through or forms on the inner surface of the glass.


The glass in a large greenhouse at Edgely Pa., was secured to the sash-bars as shown in (a), Fig. 149. It will be seen that the glass is imbedded in putty on the under side only, and that any water that can possibly leak through between the bar and the glass will be caught in the drip trough " a ", and be carried to the eaves. The lights are $16^{\prime \prime} \times 24^{\prime \prime}$ and the sash-bars are spaced $243 / 4$ ins., c. to c. The lights are held in place by two patent glazing points per light, driven in such a way as to prevent the glass from moving. The lights overlap but I-16-in., the leakage having been found to be smaller and less liable to occur with this than with a larger lap.

The Paradigm system of glazing is shown in (b) Fig. 149. This system is in use in a large number of shops, among which the steam engineering buildings for the Brooklyn Navy Yard, described in Part IV, is one of the best examples. The patents for the Paradigm skylight are controlled by Arthur E. Rendle, New York.

Skylights are of two types; (I) box skylights covering a small area and placed on a curb raising the glass above the roof, and (2) continuous skylights usually placed in the plane of the roof. The glass used for skylights varies from $1 / 4$ to $1 / 8$ inch thick and should preferably be wire glass. The glass used for skylights usually comes in sheets about 20 inches wide and up to 8 feet long.

The details of a box skylight manufactured by Vaile \& Young, Baltimore, Md., is shown in Fig. 150.

Use of Window Shades.-Where factory ribbed glass is placed so as to throw light on the ceiling, screens or shades are seldom required,


Fig. 150.
however, under ordinary conditions shades are necessary when bright sunlight strikes the window. The glass used in factory ribbed and rough plate glass as made in England is somewhat opaque, and the atmosphere is somewhat hazy, so that the use of shades in their shops is in most cases unnecessary. The glass made in this country is so clear and our atmosphere is so translucent that it has been found necessary to use shades where windows and shades are exposed to direct sunlight. The most effective and satisfactory shade is a thin white cloth, which cuts off about 60 per cent of the light.

Size and Cost of Glass.-The regular stock sizes of plane glass varies from $6 \times 16$ inches by single inches up to $24 \times 30$ inches, and above that by even inches up to $60 \times 70$ inches for double strength glass and $30 \times 50$ inches for single strength glass.

The weights of different thickness of glass, assuming 156 pounds as the weight of one cubic foot of glass are given in the following table:

Weight of glass per square foot.


The cost varies with the quality and the size, being about twice as much to glaze a given area with $30 \times 36$-inch lights as with $10 \times 12$ inch lights. The discounts given from the standard price list vary so
much that prices are of very little value except to give an idea of the relative cost of different sizes of glass and to serve as a basis for estimates.

In 1903 American window glass was quoted about as given in Table XXV.

TABLE XXV.
Cost of window glass in cents per square foot.

| Size of Lights <br> in Inches. | Single Strength. |  |  | Double Strength. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AA | A | B | AA | A | B |
| $10 \times 12$ | 5.1 | 4.3 | 4.0 | 6.8 | 6.0 | 5.5 |
| $14 \times 20$ | 5.4 | 4.5 | 4.3 | 7.5 | 6.6 | 6.1 |
| $16 \times 24$ | 5.8 | 4.8 | 4.5 | 8.3 | 7.3 | 6.7 |
| $20 \times 30$ | 6.0 | 5.1 | 4.7 | 8.9 | 7.9 | 7.4 |
| $24 \times 36$ | 6.4 | 5.5 | 4.9 | 9.4 | 8.3 | 7.6 |

In 1903 the different kinds of glass were quoted in small quantities at the factory about as follows:

Wire glass $1 / 4$ inch thick................. 23 cents per sq. ft .
Factory ribbed glass $1 / 8$ inch thick........ 9 " " "" "
Maze glass $1 / 8$ inch thick...................ı " " " "
Maze glass 3-16 inch thick................ 8 " " " "
Prismatic glass from 25 to 50 cents per sq. ft.
Refrax glass (sheet prisms) made by the Union Plate Glass Co., Limited, Pocket Nook, St. Helens, England, was quoted in 1903 as follows at the factory: Ordinary refrax glass $1 / 4^{\prime \prime}$ thick with 5 prisms to the inch, cut to any size up to $60^{\prime \prime} \times 90^{\prime \prime}, 20$ cents per sq. ft.; wired refrax glass $5-16$ inch thick with 5 prisms to the inch, cut to any size up to $40^{\prime \prime} \times 90^{\prime \prime}, 25$ cents per sq. ft.

Maltby prisms, made by Geo. K. Maltby, Boston Mass., 3-16" thick with 6 prisms to the inch costs about 25 to 30 cents per sq. ft .

Cost of Windows.-Windows with frames for mill buildings will cost from 15 to 25 cents per square foot, depending upon the size and quality of the sash, the size of the opening, and cost of glass and frames. In 1900 the cost was about 16 cents per square foot for D. S.
glass with box frames and sash, and 9 cents for S. S. glass with plank frames and sash. In 1900 skylights cost from 23 to 30 cents per square foot with D. S. glass. Windows are commonly estimated at 25 cents per square foot and skylights at from 40 to 50 cents per square foot in making preliminary estimates.

The American Luxfer Prism Company manufacture sheet prisms for factory purposes that can be cut to fit any opening up to $36^{\prime \prime} \times 84^{\prime \prime}$. The cost of sheet prisms to fit ordinary windows is about 40 cents per square foot. The improved skylight prisms made by this company cost about $\$ \mathrm{I} .50$ per square foot.

TRANSLUCENT FABRIC.-Translucent fabric consists of a wire cloth imbedded in a translucent, impervious, elastic material, probably made of linseed oil. The fabric may be bent double without cracking and is so elastic that changes due to temperature or vibrations do not affect it. If a sheet of translucent fabric is suspended and a fire applied to the edge, it will burn up leaving a carbonaceous covering on the wire. But if the edges are protected it will burn only with great difficulty. Live coals falling on skylights of this material will char and burn holes but will not set fire to the fabric. It is therefore practically fireproof.

Translucent fabric will not transmit as much light as glass, but makes a most excellent substitute therefore. It shuts off sufficient light so that the lighting is uniform throughout the shop and makes it possible for men to work directly under it without shading. Where one-quarter of the roof is covered with the fabric the lighting is practically perfect. The fabric should be washed with castile soap and warm water occasionally, and should be varnished every year or two with a special varnish furnished by the manufacturers. It is said to become less opaque with age. When properly cared for the fabric has been known to give good service for ten years. The fabric is manufactured in sheets $3^{\prime} 3^{\prime \prime}$ wide and in lengths from $4^{\prime} 6^{\prime \prime}$ to $9^{\prime} 0^{\prime \prime}$. The framework for translucent fabric is the best made of wood. A standard frame for sheets $3^{\prime} 3^{\prime \prime} \times 6^{\prime} 3^{\prime \prime}$ is shown in Fig. 151. The fabric must be stretched tight and carefully nailed around the edges of the sheet. The capped joint with metal cap shown in Fig. 151 is very
satisfactory as it holds the fabric tight, and will give slightly to accommodate changes in temperature.

Cost of Translucent Fabric.-The fabric costs from I3 to 15 cents per square foot at the factory at Quincy, Mass. The framework, freight and cost of laying will probably be as much more, making the entire cost of skylights from 25 to 30 cents per square foot.

Translucent fabric has been quite widely used and has given uniformly good results. It has been used recently in the A. T. \& S. F. R. R. shops at Topeka, Kas.


Fig. ${ }^{151 .}$
Double Glazing.-The condensation on the inner surface of glass can be prevented by double glazing the windows and skylights. Buildings with double glazing are also very much easier to heat than those with single glazing, the air space between the sheets of glass acting as an almost perfect non-conductor of heat.

Details of Windows and Skylights.-The details of windows in use in different sections of the country vary a great deal on account of the varied conditions. In buildings that have to be heated and ventilated through the windows at the same time, it is necessary to provide some means of opening and closing the windows quickly and easily; while in many other cases the sash can remain fixed. The author would call especial attention to the saving in fuel by the use of double glazing; the loss of heat through a double glazed skylight has been shown by
experiment to be only about one-half what it is through a single glazed skylight.

Details of windows for use in ordinary brick and stone walls can be found in books on architectural construction and will not be given here. A few of the best designs available for windows in buildings with corrugated steel, expanded metal and plaster, and similar walls, have been selected and are given on the following pages.

The different types of windows for buildings covered with corrugated steel siding as used by the American Bridge Company are shown in Figs. 152 to 156 inclusive.


Fig. i52. Design for a continuous fixed sash window.

The sash frames are constructed of white pine and are glazed usually with A qualityAmerican glass. The common sizes of glass used in these windows are $10^{\prime \prime} \times 12^{\prime \prime}, 12^{\prime \prime} \times 12^{\prime \prime}, 10^{\prime \prime} \times 14^{\prime \prime}$ and $12^{\prime \prime} \times 14^{\prime \prime}$ single strength. For lights larger than $12^{\prime \prime} \times 14^{\prime \prime}$, double strength glass is used. The window shown in Fig. 152 is used where light is desired without ventilation. This detail is used principally for monitor ventilators or for windows placed out of reach. Where it is desirable to obtain ventilation as well as light the window frame with sliding sash shown in Fig. I53 is used.


Fig. 153. Design for window frame with sliding sash.


Fig. 154. Design for window frame with counterbalanced sash.
Amount of Light Required.-The amount of glazed surface required in mill buildings depends upon the use to which the building is to be put, the material used in glazing, the location and angle of the windows and skylights, and the clearness of the atmosphere. In glazing windows for mills and factories in which the determination of color is a necessary part of the work, care should be used to obtain a clear white glass for the reason that the ordinary commercial glass breaks up the light passing through it so that the determination of color is difficult.


Fig. 155. Design for window frame with weighted sash.
It is common to specify that not less than io per cent of the exterior surface of ordinary mill buildings and 25 per cent of the exterior surface of machine shops and similar structures shall be glazed. Onehalf of the glazing is usually required to be in the roof in the form of skylights. With translucent fabric it has been found that the lighting is good where 25 per cent of the roof is glazed.

The present tendency in shop and factory design is to make as


Fig. 156. Design for window frame with swinging sash.
much of the side walls and roof of glass as possible ; the danger of leakage around and through skylights has prevented many from making use of skylights, although with the present methods of glazing there is no reason why any leakage should occur. The shops of the Grant Tool Company, at Franklin, Pa., shown in Fig. 157, is a good illustration of side wall lighting, while the steam engineering buildings for the Brooklyn Navy Yard, described in Part IV, is a good illustration of side wall and skylight lighting. The A. T. \& S. F. shops described in Part IV, is a good illustration of side wall, skylight and saw tooth roof lighting combined.

The Central Railway of New Jersey shops at Elizabeth, N. J., have skylights made of translucent fabric in the different buildings in


Fig. 157. Shops of the grant tool works, franklin, pa.
per cents of the entire roof surface as follows: Blacksmith shop 30 per cent; machine shop 36 per cent; and paint and repair shop 55 per cent.

The Lackawanna and Western Railway blacksmith shop has 13 square feet of skylight per 100 square feet of floor area.

In the Great Northern Railway shops at St. Paul, Minn.,-Railway Gazette, June 16, 1903-all skylights have $1 / 4$-inch ribbed glass, below which is double strength window glass. Suitable drainage is provided for the moisture which collects on the upper surface of the latter. Wire netting is stretched under the skylights to prevent broken glass from falling into the shops. The walls are supplied with windows set at 12 feet centers, 55 panes to each sash.

The skylights of the A. T. \& S. F. R. R. shops at Topeka, Kas., are made of translucent fabric, about 20 per cent of the roof surface being fabric.

The skylights of the machine shop of the Chicago City Railway are made of wire glass, about 35 per cent of the roof being glass.

The machine shop of the Lehigh Valley Ry., at Sayre, Pa., will have the side windows of plane glass. The locomotive shop will have factory ribbed glass in the side windows and wire glass in the roof and monitor skylights.

About 25 per cent of the roof of the St. Louis Train Shed is skylight.

In the American Car and Foundry Company's shop at Detroit, about 27 per cent of the exterior surface is ribbed glass.

Fully 60 per cent of the exterior surface of the Steam Engineering Buildings for the Brooklyn Navy Yard is of glass.


Fig. 157a. Details of Saw Tooth Windows for P. \& L. E. R. R. Shops. See Fig. 84d.

Experience with Skylight Construction for Railway Train Sheds.-In 1904 a committee was appointed by a prominent eastern trunk line to investigate and report on train shed skylight failures and their remedy. The committee examined the Broad Street Station train shed, Camden and Reading Terminal train sheds, and other structures in Philadelphia; the train shed at Jersey City; the North German Lloyd Steamship piers at Hoboken; the N. Y. C. \& H. R. R. R. train shed, the Macey Building, and other structures in New York; the South Union, North Union, and Back Bay stations, and the Charlestown Navy Yard in Boston; the Union Station, and the Pittsburg \& Lake Erie station in Pittsburg; and the Westinghouse Shops in East Pittsburg. A complete report is printed in Engineering News, April 21, 1904.

The conclusions of the committee were as follows:
I. That gas and smoke from locomotives, because of its influence on the metal framework of skylights, is the primary cause of the breakage of glass.
2. That the contraction and expansion of the metal frame is also a serious cause of breakage where the glass is tightly fitted in the frames.
3. From the testimony elicited and from personal observations, we find the percentage of breakage in ribbed, hammered, and wire glass is about equal. We do not find that the breakage of wire glass results from any internal stress being set up by the contraction and expansion of the wire within.
4. The larger sizes of glass break more readily than the smaller.
5. Glass set horizontally, or at an angle, breaks more readily than glass set vertically.
6. Wire netting hung under glass, from the effect of gases upon it, is unreliable.
7. Wire glass is most desirable, because when fractured, the wire will generally hold it in position until repairs can be made.
8. Steel bars, such as are used in skylights at Broad Street and Jersey City train sheds, because of the effect of the gases on same, are unsatisfactory.
9. Wooden bars, such as are used in skylights at the Jersey City train shed, are desirable, being unaffected by gases. We recommend a zinc cap in the place of the wooden cap.

1o. We recommend that a zinc expansion bar be used with brass bolts in preference to wooden bars. We are led to this conclusion from the condition of the zinc cap on the skylights on the Jersey City train shed, which show no deterioration from effect of gas.
II. We recommend that the sizes of glass used in skylights should not exceed $24 \times 36$ inches.
12. We recommend for future construction and present train sheds, where same can be adopted, a monitor form of skylight, preferably placed parallel with the tracks, of large dimensions; set far enough apart so that one monitor will not obstruct the light of another; small sizes of glass, set in wooden or approved metal frames, frames set loose enough to overcome the contraction and expansion of the metal work of the shed.
13. We recommend ventilating the monitors at the top, the opening being covered with an umbrella shelter, also by putting on each side of the monitor an opening under the eaves above the glass the entire length.

## CHAPTER XXIV.

## Ventilators.

Ventilation.-Mill buildings are ventilated either by forced draft or by natural ventilation. Natural ventilation is usually sufficient, although forced ventilation is necessary in many factories and mills. The problem of ventilation is too large to consider fully in this place and the natural method of ventilation only will be discussed. The amount of air required depends on the use to which the building is to be put; a common specification for the ventilation of mill buildings being that ventilators shall be provided and located so as to ventilate the building properly, and shall have a net opening for each ioo square feet of floor space of not less than one-fourth square foot for clean machine shops and similar buildings; of not less than one square foot for dirty machine shops; of not less than four square feet for mills; and not less than six square feet for forge shops, foundries and smelters. Ventilators in high buildings are more effective than in low ones. The following table will give an idea of the effect of height on ventilation.*
 open vents.
Monitor Ventilators.-The openings in the clerestory of monitors are fitted with louvres, shutters or sash, or may be left entirely open. Louvres are made in many different ways, the Shiffler Louvres shown in Fig. 158, and the Berlin Louvres shown in Fig. 159, are in common use. The details of these louvres as made by various firms differ somewhat.

[^16]

Fig. 158. Shiffler louvres.


Fig. 159. Berlin louvres.
The details of the Shiffler louvres shown in Fig. 158, and of the Berlin louvres shown in Fig. 159 are those adopted by the American Bridge Company. The details of the louvres are shown in the cuts and need no further explanation.


Fig. i6o. Hinged monitor shutter.
Details of a hinged shutter are shown in Fig. 160. The angle iron frame is covered with a corrugated iron covering. The shutters are made from 6 to io feet long, with two hinges for shutters 8 feet long and three hinges for shutters more than 8 feet long. Where shutters are to be glazed they are hung as in Fig. 156. The lever gear shown by the dotted lines is used in the better class of structures. This device can be used where the shutters are glazed if care is used in operating.

In smelters the clerestory of the monitor is often left entirely open or is slightly protected by self acting shutters. In the latter case the shutters are hinged at the bottom and are connected at the top with each other and with a counter-weight so that the shutter will ordinarily make
an angle of about 30 degrees with the vertical. A wind or a sṭorm will close the windward shutter and open the leeward shutter wider. The eaves of the monitor are made to project, so that very little of the storm enters.

Cost.-The shop cost for louvres is ordinarily about I cent per pound. To this must be added the cost of the sheet steel and the cost of the framework and details. In 1900 louvres without frames cost about 25 cents per square foot.

Circular Ventilators.-Circular ventilators are often used for ventilating mill buildings in place of the monitors, and on buildings requiring a small area for ventilation. They are made of galvanized iron, copper or other sheet metal, and are usually placed along the ridge line of the roof.


There are many styles of circular ventilators on the market, a few of which are shown in Fig. 16ı. The Star ventilator made by Merchant \& Co., Chicago, is quite often used and is quite efficient. It is made in sizes varying from 2 to 60 inches. In 1903 Star ventilators made of galvanized iron were quoted about as follows: 12-in., $\$ 2.00$; 18-in., \$6.75; 24-in., \$10.00; 40-in., \$45.00.

The Globe ventilator made by the Cincinnati Corrugating Company, Cincinnati, Ohio ; the Garry ventilator made by the Garry Iron \& Steel Roofing Co., Cleveland, Ohio; and the Acorn and Buckeye ventilators made by the Youngstown Iron \& Steel Roofing Co., Youngstown, Ohio, are quite efficient and all cost about the same as the Star except the Garry ventilator, which is cheaper.

Home-made circular ventilators can be made that are quite as satisfactory as the patented ventilators and are much less expensive. In 1900, ten 36 -inch circular ventilators cost $\$ 12.25$ each, and two 24 inch circular ventilators cost $\$ 9.25$ each in Minneapolis, Minn. The cost of the 24 -inch ventilators was large on account of the small number made.

## CHAPTER XXV.

## Doors.

Paneled Doors.-For openings from $\mathbf{2}^{\prime} \mathrm{o}^{\prime \prime} \times 6^{\prime} \mathrm{o}^{\prime \prime}$ to $3^{\prime} \mathrm{o}^{\prime \prime} \times 9^{\prime} \mathrm{o}^{\prime \prime}$ ordinary stock paneled doors are commonly used. The stock doors vary in width from $2^{\prime} 0^{\prime \prime}$ to $3^{\prime} 0^{\prime \prime}$ by even inches and in length by $4^{\prime \prime}$ to $6^{\prime \prime}$ up to $7^{\prime} 0^{\prime \prime}$ for $2^{\prime} 0^{\prime \prime}$ doors, and $9^{\prime} 0^{\prime \prime}$ for $3^{\prime} 0^{\prime \prime}$ doors. Stock doors are made $\mathrm{I} 3 / 8$ and $\mathrm{I} 3 / 4$ inches thick, and are made in three grades, $\mathrm{A}, \mathrm{B}$ and C ; the A grade being first class, B grade fair and C grade very poor. Paneled doors up to 7 feet wide and $21 / 4$ inches thick can be obtained from most mills by a special order.

Wooden Doors.-Wooden doors are usually constructed of matched pine sheathing nailed to a wooden frame as shown in Fig. 162 and Fig. 163.


Designs for wooden swing doors are shown in Fig. 162, and for a wooden sliding door in Fig. 163. These doors are made of white pine. Doors up to four feet in width should be swung on hinges; wider doors should be made to slide on an overhead track or should be counterbalanced and raise vertically. Sliding doors should be at least 4 inches wider and 2 inches higher than the clear opening.
"Sandwich" doors are made by covering a wooden frame with flat or corrugated steel. The wooden framework of these doors is commonly made of two or more thicknesses of $7 / 8$-inch dressed and matched white pine sheathing not over 4 inches wide, laid diagonally and nailed with clinch nails. Care must be used in handling sandwich doors made as above or they will warp out of shape. Corrugated steel with $11 / 4-$ inch corrugations makes the neatest covering for sandwich doors.

For swing doors use hinges about as follows: For doors $3^{\prime} \times 6^{\prime}$ or less use 10-inch strap or 10-inch T hinges; for doors $3^{\prime} \times 6^{\prime}$ to $3^{\prime} \times 8^{\prime}$ use 16 -inch strap or 16 -inch T hinges; for doors $3^{\prime} \times 8^{\prime}$ to $4^{\prime} \times 10^{\prime}$ use 24 -inch strap hinges.

Steel Doors.-Details of a steel lift door are shown in Fig. I64. This door is counterbalanced by weights and lifts upward between ver-


Fig. 164.
tical guides. This door was covered with corrugated steel with $11 / 4-$ inch corrugations as described in the cut.

Details of a steel sliding door are shown in Fig. 165. This door is made to slide inside the building and swing clear of the columns. Where the columns are so close together that there is not room enough for the door to slide the entire length of the opening, it should be placed on the outside of the building. The track and hangers shown


Fig. 165.
make a very satisfactory arrangement; however there is a tendency for the wheels to jump the track unless the grooves in the wheels are made very deep.

There are quite a number of patented devices on the market for hanging sliding doors. The Wilcox trolley door hanger, track and
bolt latch shown in Fig. 166, are efficient and are quite generally used: The prices of the door fixtures shown in Fig. 166 are about as follows: door hangers, $\$ 2.25$ to $\$ 3.00$ per pair ; steel track, io to 25 cts . per ft .; clips, 15 to 25 cts. each; door latch, $\$ 1.00$, f. o. b. the factory at Aurora, Ill. Discounts for this and several other well known makes of door fixtures are given each week in the Iron Age, New York, and the list prices are given in the manufacturer's catalogs.


Wilcox O. K. Steel Track


Wilcox Trolley Door Hanger

Wilcox Gravity Door Bolt and Latch Fig. 166.

Cost of Doors.-Stock panel doors cost $\$ 1.50$ to $\$ 5.00$ each, depending upon the grade, size and conditions. The details of steel doors vary so much that it is necessary to make detailed estimates in each case. The shop cost of the framework is often quite high and may run as high as 3 or 4 cts. per pound. The wooden frames for sandwich doors cost from 20 to 25 cts. per square foot. The cost of hinges, bolts, etc., required for doors can be found by applying the discounts given in the Iron Age to the list prices given in the standard lists (see Chanter XXVIII).

## CHAPTER XXVI.

## Shop Drawings and Rules.*

SHOP DRAWINGS.-The rules for making shop drawings in use by the American Bridge Company are given in their Standards for Structural Details, and are reprinted in part, in Roofs and Bridges, Part III, by Merriman and Jacoby. The following rules are essentially those in common use by bridge companies, for mill buildings and warehouses.

Make sheets for shop details 24 by 36 inches, with two border lines, $1 / 2$ and $I$ inch from the edge, respectively. For mill details use special beam sheets. The title should come in the lower right hand corner, and should contain the name of the job, the contract number, and the initials of the draftsman and checker.

Detail drawings should be made to a scale of $3 / 4$ to $I$ inch to the foot. Members should be detailed as nearly as practicable in the positions in which they occur in the structure. Show all elevations, sections, and views in their proper positions. Holes for field connections should always be blackened. Members that have Been cut away to show a section, may be either blackened or cross-hatched. Members, the ends of which are shown in elevation or plan, should be neither blackened nor cross-hatched. Holes for field connections should be located independently, and should be tied to a gage line of the member. When metal is to be planed, the ordered and finished thickness should be given.

In making shop drawings for mill buildings two methods are in use.

The first method is to make the drawing so complete that templets can be made for each individual piece, separately on the bench.

The second method is to give on the drawings only sufficient dimensions to locate the interior of the members and the position of the

[^17]pieces, leaving the templet-maker to work out the details on the layingout floor.

The first method is illustrated in Fig. 95 and the second in Fig. 96. In the second method sufficient figures should be given to properly locate the main points in the truss; the interior pieces should be located by center-lines corresponding to the gage lines of the rivets, the centers of gravity lines or the outside edges of the pieces, as the case may be. The drawings should always indicate the number of rivets to be used in each connection, the size of rivets, the usual rivet pitch, and the minimum pitch allowed.

Erection Plan.-The erection plan should be made very complete. All the notes that it is necessary for the erecter to have, should be put on the erection plans; how much of the structure is to be riveted and how much bolted, whether it is to be painted after erection or not, whether the windows and doors are to be erected or not, etc. Center line drawings are usually sufficient for the erection plans. The name and the size of the piece should be given and every piece should have a name.

The following method was used by the Gillette-Herzog Mfg. Co., for mill buildings, and was very satisfactory:

If the points of the compass are known, mark all pieces on the north side with the letter " N ", those on the south side with the letter "S", etc. Mark girts N. G. I ; N. G. 2; etc. Mark all posts with a different number, thus: N. P. I ; N. P. 2 ; etc. Mark small pieces which are alike with the same mark; this would usually include everything except posts, trusses and girders, but in order to follow the general marking scheme, where pieces are alike on both sides of a building, change the general letter; e. g. N. G. 7 would be a girt on the north side and S. G. 7 the same girt on south side. Then in case the north and south sides are alike, only an elevation of one side need be shown, and under it a note thus: "Pieces on south side of building, in corresponding positions have the same number as on this side, but prefixed by the letter "S" instead of the letter "N." Mark trusses T. I; T. 2 ; etc. Mark roof pieces R. 1; R. 2; etc.

The above scheme will necessarily have to be modified more or less according to circumstances; for example, where a building has different sections or divisions applying on the same order number, in which case each section or division should have a distinguishing letter which should prefix the mark of every piece. In such cases it will perhaps be well to omit other letters, such as N., S., etc., so that the mark will not be too long for easy marking on the piece. In general, however, the scheme should be followed of marking all the large pieces, whether alike or not, with a different mark. This would refer to pieces which are liable to be hauled immediately to their places from the cars. But for all smaller pieces which are alike, give the same mark.

For architectural buildings adopt the following general scheme of marking: The basement "A"; first floor "B"; second floor "C"; then mark all the pieces on the first floor B. I ; B. 2; etc.; columns between first and second floors B. C. I ; B. C. 2 ; etc.

It will greatly aid the detailing, checking and erection if small sections are made showing the principal connections, such as girt connections, purlin connections, etc.

The erection plans of a mill building drawn in accordance with these rules are shown in Fig. 167 and Fig. 168.

CHOICE OF SECTIONS.-In designing, it will be found economical to use minimum weights of sections, and to use sections that can be most easily obtained. As small a number of sizes should be used as is practicable where material is to be ordered from the mill, if good delivery is to be expected. The ease with which any section can be obtained in a mill order, depends upon the call that that particular mill is having for the given section. If there is a large demand for the section, it will be rolled at frequent intervals, while if there is little or no demand for the section, the rollings are very infrequent and a small order may have to wait for a long time before enough orders for the section will accumulate that will warrant a special rolling. The ease with which sections can be obtained will, therefore, depend upon the mill and the conditions of the market. The standard and permissible
sizes of sections in use by the American Bridge Company, are given in the following table.

Standard Angles.

## Permissible Angles.



Permissible Tees.

| 6" |  | Permissible Zee Bars. 5" $4^{\prime \prime}$ Standard Flats. |  | $3^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| 11/2" |  | $3^{\prime \prime}$ 年 |  | $12^{\prime \prime}$ |
| $13 / 4{ }^{\prime \prime}$ |  | $33^{1 / 2 \prime} 2^{\prime \prime} \quad 7^{\prime \prime}$ |  | $14^{\prime \prime}$ |
| $2^{\prime \prime}$ |  | $4^{\prime \prime}$ |  |  |
| $21 / 4^{\prime \prime}$ |  | $4^{1 / 2 \prime 2} \quad 2^{\prime \prime}$ |  |  |
| $21 / 2^{\prime \prime}$ |  | $5^{\prime \prime} \quad 10^{\prime \prime}$ |  |  |
| $5 / 81$ | $3 / 4{ }^{\prime \prime}$ | Standard Rounds. | 1 $1 / 4^{\prime \prime}$ | 1 $1 / 21$ |
|  |  | ${ }_{\text {Standard }}^{\text {Stand }}$ Squares. |  |  |
| $3 / 4{ }^{\prime \prime}$ |  | 7/8" $\mathrm{I}^{\prime \prime}$ | I $1 / 4$ " | I $1 / 2$ " |

Other sizes than those specified may be obtained, but the time of delivery will be very uncertain unless the order is large enough to warrant a rolling.

Deck beams, bulb angles and special section Z-bars are hard to get unless ordered in large quantities. Flats $1 / 2^{\prime \prime}$ thick and under are very hard to get.

Flats under $4^{\prime \prime}$ should be ordered by $1 / 2^{\prime \prime}$ variation in width; flats and universal plates over $4^{\prime \prime}$ should be ordered by $\mathrm{I}^{\prime \prime}$ variation in width.

## CHAPTER XXVII.

## Paints and Painting.

Corrosion of Steel.-If iron or steel is left exposed to the atmosphere it unites with oxygen and water to form rust. Where the metal is further exposed to the action of corrosive gases the rate of rusting is accelerated, but the action is similar to that of ordinary rusting. Rust is a hydrated oxide of iron, and forms a porous coating on the surface of the metal that acts as a carrier of oxygen and moisture, thus promoting the action of corrosion. If nothing is done to prevent or retard the corrosion of the iron and steel used in metal structures, the metal rapidly rusts away and the structure is short lived. Wrought iron is affected by corrosion more than cast iron, and steel is affected more than wrought iron.

The corrosion of iron and steel may be prevented or retarded by covering it with a coating that is not affected by the corroding agents. This is very effectually accomplished by galvanizing; but on account of the cost it is impracticable to use the process for coating anything but sheet steel and small pieces of structural steel. The most common methods of protecting iron and steel are by means of a coating of paint, or by imbedding it in concrete.

PAINT.-The paints in use for protecting structural steel may be divided into oil paints, tar paints, asphalt paints, varnishes, lacquers, and enamel paints. The last two mentioned are too expensive for use on a large scale and will not be considered.

OIL PAINTS.-An oil paint consists of a drying oil or varnish and a pigment, thoroughly mixed together to form a workable mixture. "A good paint is one that is readily applied, has good covering powers,
adheres well to the metal, and is durable." The pigment should be inert to the metal to which it is applied and also to the oil with which it is mixed. Linseed oil is commonly used as the varnish or vehicle in oil paints, and is unsurpassed in durability by any other drying oil. Pure linseed oil will, when applied to a metal surface, form a transparent coating that offers considerable protection for a time, but is soon destroyed by abrasion and the action of the elements. To make the coating thicker, harder and more dense, a pigment is added to the oil. An oil paint is analogous to concrete, the linseed oil and pigment in the paint corresponding to the cement and the aggregate in the concrete. The pigments used in making oil paints for protecting metal may be divided into four groups as follows: (1) lead; (2) zinc; (3) iron; (4) carbon.

Linseed Oil.-Linseed oil is made by crushing and pressing flaxseed. The oil contains some vegetable impurities when made, and should be allowed to stand for two or three months to purify and settle before being used. In this form the oil is known as raw linseed oil, and is ready for use. Raw linseed oil dries (oxidizes) very slowly and for that reason is not often used in a pure state for structural iron paint. The rate of drying of raw linseed oil increases with age; an old oil being very much better for paint than that which has been but recently extracted. Raw linseed oil can be made to dry more rapidly by the addition of a drier or by boiling. Linseed oil dries by oxidation and not by evaporation, and therefore any material that will make it take up oxygen more rapidly is a drier. A common method of making a drier for linseed oil is to put the linseed oil in a kettle, heat it to a temperature of 400 to 500 degrees Fahr., and stir in about four pounds of red lead or litharge, or a mixture of the two, to each gallon of oil. This mixture is then thinned down by adding enough linseed oil to make four gallons for each gallon of raw oil first put in the kettle. The addition of four gallons of this drier to forty gallons of raw oil will reduce the time of drying from about five days to twenty-four hours. A drier made in this way costs more than the pure linseed oil, so that driers are very often made by mixing lead or manganese oxide with
rosin and turpentine, benzine, or rosin oil. These driers can be made for very much less than the price of good linseed oil, and are used as adulterants ; the more of the drier that is put into the paint, the quicker it will dry and the poorer it becomes. Japan drier is often used with raw oil, and when this or any other drier is added to raw oil in barrels, the oil is said to be "boiled through the bung hole."

Boiled linseed oil is made by heating raw oil, to which a quantity of red lead, litharge, sugar of lead, etc., has been added, to a temperature of 400 to 500 degrees Fahr., or by passing a current of heated air through the oil. Heating linseed oil to a temperature at which merely a few bubbles rise to the surface makes it dry more rapidly than the unheated oil; however, if the boiling is continued for more than a few hours the rate of drying is decreased by the boiling. Boiled linseed oil is darker in color than raw oil, and is much used for outside paints. It should dry in from 12 to 24 hours when spread out in a thin film on glass. Raw oil makes a stronger and better film than boiled oil, but it dries so slowly that it is seldom used for outside work without the addition of a drier.

Lead.-White Lead (hydrated carbonate of lead-specific gravity 6.4) is used for interior and exterior wood work. White lead forms an excellent pigment on account of its high adhesion and covering power, but it is easily darkened by exposure to corrosive gases and rapidly disintegrates under these conditions, requiring frequent renewal. It does not make a good bottom coat for other paints, and if it is to be used at all for metal work it should be used over another paint.

Red Lead (minium; lead tetroxide-specific gravity 8.3) is a heavy, red powder approximating in shade to orange; is affected by acids, but when used as a paint is very stable in light and under exposure to the weather. Red lead is seldom adulterated, about the only substance used for the purpose being red oxide. Red lead is prepared by changing metallic lead into monoxide litharge, and converting this product into minium in calcining ovens. Red lead intended for paints must be free from metallic lead. One ounce of lampblack added to one pound of red lead changes the color to a deep chocolate and increases the
time of drying. This compound when mixed in a thick paste will keep 30 days without hardening.

Zinc.-Zinc white (zinc oxide-specific gravity $5 \cdot 3$ ) is a white loose powder, devoid of smell or taste and has a good covering power. Zinc paint has a tendency to peel, and when exposed there is a tendency to form a zinc soap with the oil which is easily washed off, and it therefore does not make a good paint. However, when mixed with red oxide of lead in the proportions of I lead to 3 zinc, or 2 lead to 1 zinc, and ground with linseed oil, it makes a very durable paint for metal surfaces. This paint dries very slowly, the zinc acting to delay hardening about the same as lampblack.

Iron Oxide.-Iron oxide (specific gravity 5) is composed of anhydrous sesquioxide (hematite) and hydrated sesquioxide of iron (iron rust). The anhydrous oxide is the characteristic ingredient of this pigment and very little of the hydrated oxide should be present. Hydrated sesquioxide of iron is simply iron rust, and it probably acts as a carrier of oxygen and accelerates corrosion when it is present in considerable quantities. Mixed with the iron ore are various other ingredients, such as clay, ocher and earthy materials, which often form 50 to 75 per cent of the mass. Brown and dark red colors indicate the anhydrous oxide and are considered the best. Bright red, bright purple and maroon tints are characteristic of hydrated oxide and make less durable paints than the darker tints. Care should be used in buying iron oxide to see that it is finely ground and is free from clay and ocher.

Carbon.-The most common forms of carbon in use for paints are lampblack and graphite. Lampblack (specific gravity 2.6) is a great absorbent of linseed oil and makes an excellent pigment. Graphite (blacklead or plumbago-specific gravity 2.4) is a more or less impure form of carbon, and when pure is not affected by acids. Graphite does not absorb nor act chemically on linseed oil, so that the varnish simply holds the particles of pigment together in the same manner as the cement in a concrete. There are two kinds of graphite in common use for paints-the granular and the flake graphite. The Dixon Graphite Co., of Jersey City, uses a flake graphite combined with silica,
while the Detroit Graphite Manufacturing Co., uses a mineral ore with a large percentage of graphitic carbon in granulated form. On account of the small specific gravity of the pigment, carbon and graphite paints have a very large covering capacity. The thickness of the coat is, however, correspondingly reduced. Boiled linseed oil should always be used with carbon pigments.

Mixing the Paint.-The pigment should be finely ground and should preferably be ground with the oil. The materials should be bought from reliable dealers, and should be mixed as wanted. If it is not possible to grind the paint, better results will usually be obtained from hand mixed paints made of first class materials than from the ordinary run of prepared paints that are supposed to have been ground. Many ready mixed paints are sold for less than the price of linseed oil, which makes it evident that little if any oil has been used in the paint. The paint should be thinned with oil, or if necessary a small amount of turpentine may be added; however turpentine is an adulterant and should be used sparingly. Benzine, gasoline, etc., should never be used in paints, as the paint dries without oxidizing and then rubs off like chalk.

Proportions.-The proper proportions of pigment and oil required to make a good paint varies with the different pigments, and the methods of preparing the paint; the heavier and the more finely ground pigments require less oil than the lighter or coarsely ground while ground paints require less oil than ordinary mixed paints. A common rule for mixing paints ground in oil is to mix with each gallon of linseed oil, dry pigment equal to three to four times the specific gravity of the pigment, the weight of the pigment being given in pounds. This rule gives the following weights of pigment per gallon of linseed oil: white lead, 19 to 26 lbs . ; red lead, 25 to 33 lbs . ; zinc, 15 to 2 Ilbs . ; iron oxide, 15 to 20 lbs .; lampblack, 8 to Io lbs.; graphite, 8 to 10 lbs . The weights of pigment used per gallon of oil varies about as follows: red lead, 20 to 33 lbs . ; iron oxide, 8 to 25 lbs .; graphite, 3 to 12 lbs .

Covering Capacity.-The covering capacity of a paint depends upon the uniformity and thickness of the coating; the thinner the coat-
ing the larger the surface covered per unit of paint. To obtain any given thickness of paint therefore requires practically the same amount of paint whatever its pigment may be. The claims often urged in favor of a particular paint that it has a large covering capacity may mean nothing but that an excess of oil has been used in its fabrication. An idea of the relative amounts of oil and pigment required, and the covering capacity of different paints may be obtained from the following table.

Average, surface covered per gallon of paint.*

| Paint. | Volume of oil. | Lbs. of lig ment. | Volumeand Weight of Paint. | Square Feet. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} 1 \\ \text { Coat. } \end{gathered}$ | $\begin{gathered} 2 \\ \text { Coats. } \end{gathered}$ |
| Iron Oxide (powdered) | 1 gal | 8.00 | Gals. Lbs. $1.2=16.00$ | 600 | 350 |
| " " (ground in oil).. |  | 24.75 | $2.6=32.75$ | 630 | 375 |
| Red Lead (powdered).. | 1 " | 22.40 | $1.4=30.40$ | 630 | 375 |
| White Lead (g'rd in oil). | 1 | 25.00 | $1.7=33.00$ | 500 | 300 |
| Graphite (ground in oil). | 1 " | 12.50 | $2.0=20.50$ | 630 | 350 |
| Black Asphalt........ | 1 "(turp.) | 17.25 | $4.0=30.00$ | 515 | 310 |
| Linseed oil (no pigment |  |  |  | 875 | .... |

Light structural work will average about 250 square feet, and heavy structural work about 150 square feet of surface per net ton of metal.

It is the common practice to estimate $1 / 2$ gallon of paint for the first coat and $3 / 8$ gallon for the second coat per ton of structural steel, for average conditions.

Applying the Paint.-The paint should be thoroughly brushed out with a round brush to remove all the air. The paint should be mixed only as wanted, and should be kept well stirred. When it is necessary to apply paint in cold weather, it should be heated to a temperature of 130 to 150 degrees Fahr.; paint should not be put on in freezing weather. Paint should not be applied when the surface is damp, or during foggy weather. The first coat should be allowed to stand for three or four days, or until thoroughly dry, before applying

[^18]the second coat. If the second coat is applied before the first coat has dried, the drying of the first coat will be very much retarded.

Cleaning the Surface.-Before applying the paint all scale, rust, dirt, grease and dead paint should be removed. The metal may be cleaned by pickling in an acid bath, by scraping and brushing with wire brushes, or by means of the sand blast. In the process of pickling the metal is dipped in an acid bath, which is followed by a bath of milk lime, and afterwards the metal is washed clean in hot water. The method is expensive and not satisfactory unless extreme care is used in removing all traces of the acid. Another objection to the process is that it leaves the metal wet and allows rusting to begin before the paint can be applied. The most common method of cleaning is by scraping with wire brushes and chisels. This method is slow and laborious. The method of cleaning by means of a sand blast has been used to a limited extent and promises much for the future. The average cost of cleaning five bridges in Columbus, Ohio, in 1902, was 3 cts. per square foot of surface cleaned.* The bridges were old and some were badly rusted. The painters followed the sand blast and covered the newly cleaned surface with paint before the rust had time to form.

Mr. Lilly estimates the cost of cleaning light bridge work at the shop with the sand blast at $\$$ I. 75 per ton, and the cost of heavy bridge work at $\$ 1.00$ per ton. In, order to remove the mill scale it has been recommended that rusting be allowed to start before the sand blast is used. One of the advantages of the sand blast is that it leaves the surface perfectly dry, so that the paint can be applied before any rust has formed.

Cost of Paint.-The following costs of paints will give an idea of costs and proportions used:**

Oxide of Iron (Prince's Metallic Brown). One gallon of paint.
$61 / 4 \mathrm{lbs}$. mineral at I cent. . . . . . . . . . . . . . . . . . . . . . . . . 6 cts.
$61 / 4 \mathrm{lbs}$. raw linseed oil-5-6 gallon at 56 cents. . . . . . . 47 "
Cost of materials per gallon of paint.................. 53 cts.

[^19]Red Lead (National Paint Co.). One gallon of paint.
20 lbs red lead at 5 cents.............................. $\$ \mathrm{I} .00$
$5^{1 / 2} \mathrm{lbs}$. raw linseed oil- $3 / 4$ gallon at 56 cents........ . . 42
Cost of materials per gallon of paint................. $\overline{\$ \mathrm{I} .4^{2}}$
Graphite Paint (Dixon's Graphite). Five pounds of graphite paste and I gallon of oil make $11 / 2$ gallons of paint.
$33 / 4 \mathrm{lbs}$. graphite paste at 12 cents ...................... 45 cts .
$3 / 4$ gallon boiled linseed oil at 59 cents................ 44 "
Cost of materials per gallon of paint. ................. $8 \overline{89 \mathrm{cts}}$.
Mr. A. H. Sabin in a paper read before the American Society of Civil Engineers, June, 1895, gives the following as the minimum costs of paints: Iron Oxide paint, $61 / 4 \mathrm{lbs}$. of oxide worth $91 / 2$ cents; $61 / 4$ lbs. of oil worth $461 / 2$ cents; mixing in a mill, barrels, etc., 5 cents; making the actual cost of the paint 60 cents per gallon. The cost of a gallon of pure lead paint using 20 lbs . of red lead per gallon and oil at 56 cents per gallon will cost not less than $\$ 1.50$ per gallon.

Cost of Painting.-The cost of applying the paint depends upon the condition of the surface to be painted, and upon other conditions. A common rule for ordinary work is that the cost of painting is about two to three times the cost of a good quality of paint required for the job. The cost of labor may not be more than the cost of the paint, and may be four or five times as much. The cost of painting light structural work in which considerable climbing has to be done is very difficult to estimate. The average cost of painting four bridges in Denver, Col., with a finishing coat of Goheen's Carbonizing, in 1899, was $5^{1}$ cents for paint and 80 cents for labor, per ton of metal painted.

Priming Coat.-Engineers are very much divided as to what makes the best priming coat ; some specify a first coat of pure linseed oil and others a priming coat of paint. Linseed oil makes a transparent coating that allows imperfections in the workmanship and rusted spots to be easily seen; it is not permanent however, and if the metal is exposed for a long time the oil will often be entirely removed before the second coat is applied. It is also claimed that the paint will not adhere
as well to linseed oil that has weathered as to a good paint. Linseed oil gives better results if applied hot to the metal. Another advantage of using oil as a priming coat is that the erection marks can be painted over with the oil without fear of covering them up. Red lead paint toned down with lampblack is probably used more for a priming coat than any other paint; the B. \& O. R. R., uses io ozs. of lampblack to every 12 lbs . of red lead.

Without going further into the controversy it would seem that there is very little choice between linseed oil and a good red lead paint for a priming coat.

Finishing Coat.-From a careful study of the question of paints, it would seem that for ordinary conditions, the quality of the materials and workmanship is of more importance in painting metal structures than the particular pigment used. If the priming coat has been properly applied there is no reason why any good grade of paint composed of pure linseed oil and a very finely ground, stable and chemically noninjurious pigment will not make a very satisfactory finishing coat. Where the paint is to be subjected to the action of corrosive gases or blasts, however, there is certainly quite a difference in the results obtained with the different pigments. The graphite and asphalt paints appear to withstand the corroding action of smelter and engine gases better than red lead or iron oxide paints; while red lead is probably better under these conditions than iron oxide. Portland cement paint is the only paint that will withstand the action of engine blasts, and its use is now entirely in the experimental stage.

Conclusion.-It is urged against red lead paint, that the oil and the lead form a lead soap which is unstable; against iron oxide paint, that since the paint contains more or less iron rust it is necessarily a promoter of rust ; against graphite paint, that there is not enough body in the pigment to make a substantial paint; etc. There is more or less truth in all the accusations made against the different kinds of paint, if the paint be bought ready mixed, or if made out of poor materials; however, with a good pigment and pure linseed oil, none of the above objections are of weight.

To obtain the best results in painting metal structures therefore, proceed as follows: (I) prepare the surface of the metal by carefully removing all dirt, grease, mill scale, rust, etc., and give it a priming coat of pure linseed oil or a good paint-red lead seems to be the most used for this purpose ; (2) after the metal is in place carefully remove all dirt, grease, etc., and apply the finishing coats-preferably not less than two coats-giving ample time for each coat to dry before applying the next. Painting should not be done in rainy weather, or when the metal is damp, nor in cold weather unless special precautions are taken to warm the paint. The best results will usually be obtained if the materials are purchased in bulk from a responsible dealer and the paint ground as wanted. Good results are obtained with many of the patent or ready mixed paints, but it is not possible in this place to go into a discussion of their respective merits.

ASPHALT PAINT.-Many prepared paints are sold under the name of asphalt that are mixtures of coal tar, or mineral asphalt alone, or combined with a metallic base, or oils. The exact compositions of the patent asphalt paints are hard to determine. Black bridge paint made by Edward Smith \& Co., New York City, contains asphaltum, linseed oil, turpentine and Kauri gum. The paint has a varnish-like finish and makes a very satisfactory paint. The black shades of asphalt paint are the only ones that should be used.

COAL-TAR PAINT.-Coal-tar used for painting iron work should be purified from all constituents of an acid nature; for this reason it is preferable to employ coal-tar pitch and convert it into paint by solution in benzine or petroleum. Tar paint should preferably be applied while hot. Oil paint will not stick to tar, and when repainting a surface that has been painted with tar it is necessary to scrape the surface if a good job is desired. Tar paint does not become hard and will run in hot weather; it is therefore not a desirable paint to use for many purposes.

CEMENT AND CEMENT PAINT.-Experiments have shown that a thin coating of Portland cement is effective in preventing rust; that a concrete to be effective in preventing rust must be dense and made very wet. The steel must be clean when imbedded in the concrete. There is quite a difference of opinion as to whether the metal should be painted before being imbedded or not. It is probably best to paint the
metal if it is not to be imbedded at once, or is not to be used in con-crete-steel construction where the adhesion of the cement to the metal is an essential element. When the metal is to be imbedded immediately it is better not to paint it.

Portland Cement Paint.-A Portland cement paint has deen used on the High St. viaduct in Columbus, Ohio, with good results. The viaduct was exposed to the fumes and blasts from locomotives, so that an ordinary paint did not last more than six months even on the least exposed portions. The method of mixing and applying the paint is described in Engineering News, April 24th and June 5th, 1902, as follows: "The surface of the metal was thoroughly cleaned with wire brushes and files-the bridge had been cleaned with a sand blast the previous year. A thick coat of Japan drier was then applied and before it had time to dry a coating was applied as follows: Apply with a trowel to the minimum thickness of 1-16 inch and a maximum thickness of $1 / 4 \mathrm{inch}$ (in extreme cases $1 / 2$ inch) a mixture of 32 lbs . Portland cement, 12 lbs . dry finely ground lead, 4 to 6 lbs . boiled linseed oil, 2 to 3 lbs . Japan drier." After a period of about two years the coating was in almost perfect condition and the metal under the coating was as ciean as when painted. The cost of the coating including the hand cleaning, materials and labor was 8 cents per square foot.

While this method of protecting metal is somewhat expensive it will certainly pay for itself in many places around smelters and shops.

References on Paint and Painting.-For a more complete discussion of the subject of paints the reader should consult the following:

Iron Corrosion by Louis E. Andes.
The Painting and Sand Blast Cleaning of Steel Bridges and Viaducts, by George W. Lilly, Engineering News, April 24th, 1902.

Rustless Coatings of Iron and Steel, by M. P. Wood, Transactions American Society of Mechanical Engineers, Vols. 15 and 16.

Preservation of Iron Structures Exposed to the Weather, by E. Gerber, Transactions American Society of Civil Engineers, May, 1895.

Painting Iron Railway Bridges, by Walter G. Berg, Engineering News, June 6, 1895.

Paints and Varnishes, by A. H. Sabin, Association of Engineering Societies, February, 1900.

Application of Paints, Varnishes, and Enamels for the Protection of Iron and Steel Structures and Hydraulic Work--a pamphlet for free distribution by Edward Smith \& Company, New York.

## CHAPTER XXVIII.

## Estimate of Weight and Cost.

ESTIMATE OF WEIGHT.*-The contract drawings for mill buildings are usually general drawings about like those in Fig. 167 and Fig. 168, in which the main members and the outline of the building are shown, together with enough sketch details to enable the detailer to properly detail the work. In making an estimate of weight from general drawings it is necessary that the estimater be familiar with the style of the details in use at the shop, and with the per cent of the main members that it is necessary to add, to provide for details and get the total shipping weight of the structure. There are two methods of allowing for details:(1) to add the proper per cent for details to the weight of each main member in the structure, and (2) to add a per cent for details to the total weight of the main members in the structure. The first method is the safest one to follow, although the second gives good results when used by an experienced man. The best way to obtain data on the per cents of details of different members in buildings and other structures is to make detailed estimates from the shop drawings. By checking these data with the actual shipping weights, the engineer will soon have information that will be invaluable to him. Second hand data on estimating are of comparatively little value for the reason that the conditions under which they hold good are rarely noted, and it is better that the novice work out his own data and depend on his own resources, at least until he has developed his estimating sense. In short the only way to learn to estimate, is to estimate.

The method of making estimates will be illustrated by making an estimate from the working drawings of a steel transformer building, the general plans of which are shown in Figs. 167 and 168. The

[^20]members marked "Main Members" are those given on the general drawing, and the "Details" are those members whose sizes are supplied by the detailer. The building is a steel frame building, $60^{\prime} 0^{\prime \prime}$ wide, $80^{\circ}$ $\mathrm{o}^{\prime \prime}$ long, $20^{\prime} \mathrm{o}^{\prime \prime}$ posts, pitch of roof $\mathrm{I} / 3$, and is covered with corrugated


Fig. 167. Cross-section and plan of steel transformer building.
steel. The general plans of the framework are shown in Figs. 167 and 168, and the plans and details of the corrugated steel are shown in Figs. 128 and 129.

The weights of the different sections were obtained from Cambria Steel. The estimate is self explanatory.


Fig. 168. Side and end elevations of steel transformer building.

## ESTIMATE OF WEIGHT

Steel Frame Transformer Building, $60^{\prime}-0^{\prime \prime}$ Wide, $80^{\circ}-0^{\circ}$ Long, $20^{\circ} 0^{\prime \prime}$ Posts. Pitch of Roof $\frac{1}{3}$. Covered with Corrugated Iron.




The weights and per cents of three other buildings, are shown in Table XXVI. The estimates for these buildings were made from the shop drawings, and were checked with the shipping weights. These buildings are of light construction with end post bents, (a) Fig. I.

## ESTIMATE OF COST



## TABLE XXVI.

Weights and per cents of details of mill buildings.

| Steel Mill Buildings with Self Supporting Frames covered on Roof and Sides with one thickness of Corrugated Iron. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part <br> of <br> Structure | $40^{-} 0^{\circ} \times 40^{-} 0^{\circ} \times 14^{-}-0^{\circ}$ <br> 2 Trusses $40^{\circ} 0^{\circ}$ <br> Pitch $\frac{1}{4}$ <br> End Framina <br> Cor. Iron $\left\{\begin{array}{l}\text { Roof } \\ \text { Sides }\end{array} 24\right.$ <br> 2 Circularvenlilator |  | $40^{\circ} 0^{\circ} \times 48^{\circ} 0^{\circ} \times 14^{\prime}-0^{\circ}$ <br> 2 Trusses $40^{\circ}-0^{\circ}$ Pitch ${ }^{4}$ End Framing Cor Iron ${ }^{\text {Roof }}$ Sides 24 2 Circular Venlilotor |  | $60^{\circ}-0^{\circ} \times 750^{\circ} \times 18^{\circ} 0^{\circ}$ <br> 4 Trusses $60^{\circ} 0^{\circ}$ <br> Pitch $\frac{1}{5}$ <br> End Framina <br> CorJron $\left\{\begin{array}{l}\text { Roof } \\ \text { Sides }\end{array} 2224\right.$ <br> 3 Circular Ventiliotor |  |  |  |
|  | Weight | $\left\|\begin{array}{c} \text { Details in } \\ \text { per cent } \\ \text { of Main } \\ \text { Members } \end{array}\right\|$ | Weight | $\begin{aligned} & \text { Details in } \\ & \text { per cent } \\ & \text { of Main } \\ & \text { Members } \end{aligned}$ | Weight | Details in <br> per cent <br> of Main <br> Members | Weight | Details in <br> per cent <br> of Moin <br> Members |
|  | lbs | ercent | Ibs | er cent | Ibs | percent | 1 b | percent |
| Trusses | 2848 | 25 | 2848 | 25 | 13940 | 34.4 | 14020 | 24.6 |
| 4 L columns | 1428 | 70 | 1428 | 70 | 3476 | 52.5 |  | 481 |
| I Beam . | 1148 | 15 | 1148 | 15 | 4251 | 33.0 | 6056 | 14.1 |
| L Columns | 912 | 36 | 952 | 36 | 1470 | 14.0 | 1668 | 36.3 |
| End Rafters | 1036 | 17 | 1076 | 22 | 3314 | 11.6 | 1776 | 200 |
| Eave Struts | 900 | 2 | 1080 |  | 3117 | 33.2 | 2120 | 0.0 |
| LowerChord Bracing | 930 | 22 | 1049 | 20 | 2763 | 9.7 | 3186 | 7.0 |
| Rods | 900 | 15 | 920 | 17 | 1737 | 6.2 | 2060 | 12.0 |
| Purlins | 2281 | 5 | 3516 | 7 | 6713 | 47 | 10595 | 0.0 |
| Girts | 3170 | 2 | 3252 | 2 | 9895 | 10.0 | 9590 | 0.0 |
| Weight of Fromework | 15553 | 19 | 17269 | 20 | 50676 | 24.0 | 55703 | 13.0 |
| Weight per Sq.Ft | 9.8 |  | 9.0 |  | 11.2 |  | 11.7 |  |
| Corruqated Iron | 5880 |  | 6892 |  | 17000 |  | 23626 |  |
| Total of Steel | 21433 |  | 24161 |  | 67676 |  | 79329 |  |
| Weight per Sq.Ft. | 13.4 |  | 12.6 |  | 15.1 |  | 16.5 |  |

Channel eave struts were used in all except the third building in which 4 -angle laced struts were used. A very good idea of the per cent of details in the different parts of the structures can be obtained from Table XXVI. The details of riveted mill building trusses will commonly vary between the limits of 25 and 35 per cent as given in the table; being more often near 25 than 35 per cent. The per cents of details in trusses is practically independent of the length of span, and is larger for light than for heavy work. It should be noted that the details in columns is mostly due to the bases and connections-the per cents of details will therefore decrease as the length of the column increases. The weights of the other parts are so variable that no general rules can be given. Where a uniform per cent is added to the total weight of main members to provide for details, it is common to add about 30
per cent to the weight of the framework exclusive of the purlins and girts where end bent (b) Fig. I, is used. In the estimate given it will be seen that the per cent is only 22 , the small value being due in part to the use of channel eave struts and the end post framing.

In estimating the weight of corrugated steel add 25 per cent for laps where two corrugations side lap and 6 inches end lap are required, and 15 per cent where one corrugation side lap and 4 inches end lap are required.

The weights of the sections, rods, bolts, turnbuckles, etc., are obtained from Cambria Steel, or other handbook.

The engineer should use every care to check his work in making estimates, the material should be checked off the drawings, and the calculations should be carefully checked and rechecked. Slide rules and adding machines are invaluable in this work. No results should, however, be allowed to pass until they have been roughly checked by the engineer by aliquot parts, or by making a mental estimate of each quantity. The engineer can soon develop a sense of estimate, so to speak, and will often detect blunders intuitively. Accuracy is of more value in estimating than precision. While the method outlined may seem somewhat crude at first glance, it is nevertheless true that a preliminary estimate made by a skilled man will commonly be within I or 2 per cent of the shipping weight, and if off more than $21 / 2$ per cent it is pretty certain that there was something wrong either with the estimate or with the estimater. The estimated weight should be a little heavy rather than light, say I to 2 per cent.

ESTIMATE OF COST.-The cost of the different parts of a mill building varies with the local conditions, cost of labor, and cost of materials. The discussion of this subject will be divided into (1) cost of material, (2) cost of shop work, and (3) cost of erection. The cost of transportation must also be included in arriving at the total cost. The subject of costs is a very difficult one to handle and the author would caution the reader to use the data given on the following pages with care, for the reason that costs are always relative and what may
be a fair cost in one case may be sadly in error in another case which appears an exact parallel. The price of labor will be given in each case, or the costs will be based on a charge of 40 cents per hour which includes labor, cost of management, tools, etc.

Cost of Material.-The cost of structural steel can be obtained from the current numbers of the Iron Age, Engineering News, etc., or may be obtained direct from the manufacturers or dealers. In 1903 beams, channels, angles, plates, and bars were quoted at about 1.60 cents per pound f. o. b. Pittsburg. Beams 18, 20 and 24 inches deep take 0 . Io cents per pound higher price than the base price for beams. The mills at present quote a delivered price only, equal to the mill price plus the usual freight charge. This price is often more than the customer could obtain by paying the freight himself, on account of the freight rebates that are often allowed.

Cost of Mill Details.*-Mills are allowed a variation in length of sections of $3 / 4$ of an inch; which means that beams, channels, etc., may come $3 / 8$ of an inch shorter or $3 / 8$ of an inch longer than the length called for. When a less variation than this is required a special price is charged for cutting to exact length. The following list of mill extras adopted January, 1902, is now in force:

List of extras to be added to price of plain beams and channels.
I. For cutting to length with less variation
than plus or minus $3 / 8$ inch.......... \$o.15
2. Plain punching one size hole in web only . 15
3. Plain punching one size hole in one or both
flanges .................................. 15
4. Plain punching one size hole in either web
and one flange or web and both flanges .25
5. Plain punching each additional size hole in
either web or flange, web and one flange
or web and both flanges.................... 25
6. Plain punching one size hole in flange and
another size hole in web of the same beam
or channel .................................. 40
7. Punching and assembling into girders.... 35

* See Appendix III.

8. Coping, ordinary beveling, including cutting to exact length, with or without punching, including the riveting or bolting of standard connection angles . 35
9. For painting or oiling one coat with ordinary oil or paint. . 10
10. Cambering Beams and Channels and other shapes for ships or other purposes. . . 25
II. Bending or other unusual work....... . Shop rates
11. For fittings, whether loose or attached, such as angle connections, bolts and separators, tie-rods, etc..................... I. 55
The above prices are per ioo lbs. of steel.
In ordering material from the mill the following items should be borne in mind. Where beams butt at each end against some other member, order the beams $1 / 2$ inch shorter than the figured lengths; this will allow a clearance of $1 / 4$ inch if all beams come $3 / 8$ of an inch too long. Where beams are to be built into the wall, order them in full lengths making no allowance for clearance. Order small plates in multiple lengths. Irregular plates on which there will be considerable waste should be ordered cut to templet. Mills will not make reentrant cuts in plates. Allow $1 / 4$ of an inch for each milling for members that have to be faced. Order web plates for girders $1 / 4$ to $1 / 2$ inch narrower than the distance back to back of angles. Order as nearly as possible every thing cut to required length, except where there is liable to be changes made, in which case order long lengths.

It is often possible to reduce the cost of mill details by having the mills do only part of the work, the rest being done in the field, or by sending out from the shop to be riveted on in the field connection angles and other small details that would cause the work to take a very much higher price. Standard connections should be used wherever possible, and special work should be avoided.

The classification of iron and steel bars is given in Table XXVII. The full extra charges for sizes other than those taking the base rate are seldom enforced; one-half card extras being very common.

## TABLE XXVII. Iron Classification.

Adopted Dec. 3, 1895, by National Bar Iron Association. Adopted March 16, 1899, by Eastern Bar Iron Manufacturers' Association.

## Rounds and Squares.



Flats.


Flats $\frac{7}{3}$ thick $\frac{1}{10}$ C. per 1 tb higher than $\frac{1}{4}$ to $\frac{5}{16}$ thick.
Bevel edge Shaft Iron $\frac{1}{10} \mathrm{c}$. higher than same size of Flats.
All round edge iron $\frac{1}{10} \mathrm{c}$. per ib extra.
Horse Shoe Iron all sizes ic. extra.

## Light Bands.

| Extra. | $E_{1}$ |
| :---: | :---: |
|  |  |
|  | $\underline{I}$ to $I_{16}^{8} \times$ No. 9 to ${ }^{3}{ }^{3}$ |
| Nos. 10, Ir and 12.......- $1_{1}^{10}$ | I1/4 to $4 \times$ Nos. Io, II |
| 1/2 $\times$ No. 9 to $\frac{3}{16}$..............- $\frac{13}{10}$ | $x 1 / 4$ to $4 \times$ No. 9 to |
| to $588 \times$ Nos. 10, 11 and 12....... $1 \frac{1}{10}$ | $41 / 4$ to $6 \times$ Nos. 10, II |
| to $58 \times$ No. 9 to $\frac{16}{16}$................ 1 Ic . | $4 \frac{1}{4}$ to $6 \times$ Nos. 9 to |
|  | 61/4 to 63/4 x Nos. IO, II |
| to $344 \times$ No. 9 to $\frac{3}{16}$-............... $\frac{8}{10}$ | $61 / 4$ to 633/4 $\times$ No. 9 to |
| 7/8 $\times$ Nos. 10, II and $12 . \ldots \ldots$.... $\frac{7}{10}$ | 7 to $8 \times$ Nos. 10, 11 |
| $7 / 8 \times$ No. 9 to $\frac{3}{16}$ | 7 to 8 x No. 9 t |

[^21]Shop Cost.-The shop cost of the various classes of work is a variable quantity, depending upon the equipment and capacity of the shop, the number of pieces made alike, the familiarity of the shop men with the particular class of work, and with the cost of labor. The costs given below are the average costs for a shop with a capacity of about Iooo tons per month that has made a specialty of mill building work. The costs given are based on a charge of 40 cents per hour for the number of hours actually consumed in getting out the contract. This charge is assumed to cover the cost of management, cost of operation and maintenance, as well as the cost of labor. The cost of management in a small shop is very small, but in a large concern it may amount to as much as 35 to 40 per cent of all the other charges combined. For this reason small structural shops can often fabricate light structural steel for a less cost than the large shops. The prices given are about an average of those used by the agents of the company above, and have been checked against actual costs for the greater part.

Columns.-In lots of at least six, the shop cost of columns is about as follows: Columns made of two channels and two plates, or two channels laced cost about 0.80 to 0.70 cents per lb ., for columns weighing from 600 to 1000 lbs . each; columns made of 4 -angles laced cost from 0.80 to I.Io cents per lb .; columns made of two channels and one I beam, or three channels cost from 0.65 to 0.90 cents per lb .; columns made of single I beams, or single angles cost about 0.50 cents per lb .; and Z -bar columns cost from 0.70 to 0.90 cents per lb .

Plain cast columns cost from 1.50 to 0.75 cents per lb., for columns weighing from 500 to 2500 lbs ., in lots of at least six.

Roof Trusses.-In lots of at least six, the shop cost of ordinary riveted roof trusses in which the ends of the members are cut off at right angles is about as follows: Trusses weighing iooo lbs. each, I.I5 to 1.25 cents per lb.; trusses weighing 1500 lbs . each, 0.90 to 1.00 cents per lb .; trusses weighing 2500 lbs . each, 0.75 to 0.85 cents per lb .; and trusses weighing 3500 to 7500 lbs . 0.60 to 0.75 cents per lb . Pin connected trusses cost from 0 . io to 0.20 cents per lb . more than riveted trusses.

Eave Struts.-Ordinary eave struts made of 4 -angles laced, whose length does not exceed 20 to 30 feet, cost for shop work from 0.80 to r.oo cents per lb.

Plate Girders.-The shop work on plate girders for crane girders and floors will cost from 0.60 to I .25 cents per lb., depending upon the weight, details and number made at one time.

Eye-Bars.-The shop cost of eye-bars varies with the size and length of the bars and the number made alike. The following costs are a fair average: Average shop cost of bars 3 inches and less in width and $3 / 4$ inches and less in thickness, is from 1.20 to 1.85 cents per 1 b ., depending on length and size. A good order of bars running from $21 / 2^{\prime \prime} \times 3 / 4^{\prime \prime}$ to $3^{\prime \prime} \times 3 / 4^{\prime \prime}$, and from 16 to 30 ft . long, with few variations in size, will cost about I. 20 cents per lb. Large bars in long lengths ordered in large quantities can be fabricated at from 0.55 to 0.75 cents per 1 b .

To get the total cost of eye-bars the cost of bar steel must be added to the shop cost.

Cost of Drafting.-The cost per ton for making details of mill buildings varies with the character of the work and the tonnage that is to be fabricated from one detail, so that costs per ton may mean very little. The following will give an idea of the range of costs. Details for headworks for mines cost from $\$ 4.00$ to $\$ 6.00$ per ton; details for church and court house roofs having hips and valleys cost from $\$ 6.00$ to $\$ 8.00$ per ton; details for ordinary mill buildings cost from $\$ 2.00$ to $\$ 4.00$ per ton. The details for all work fabricated by the Gillette-Herzog Mfg. Co., with the exception of plain beams and complicated tank work, were made in 1896 by contract, by Mr. H. A. Fitch, now structural engineer for the Minneapolis Steel and Machinery Co., Minneapolis, for $\$ 2.06$ per ton. This price netted the contractor a fair profit.

Actual Costs of Detailing.-The details of the building for which the estimate is made in this chapter cost $\$ 3.60$ per ton. The details for the Basin \& Bay State Smelter, Basin, Montana, containing 270 tons of steel cost $\$ 2.00$ per ton.

Actual Shop Costs.-The following actual shop costs will give an idea of the range of costs: The shop cost of the transformer building of which the estimate is made in this chapter was about $\$ 20.00$ per ton including drafting; the Carbon Tipple building at Carbon, Montana, weighing 86 tons, cost $\$ 18.60$ per ton. The shop cost of the structural work of the East Helena transformer building, the estimate of which is given in the next to the last column in Table XXVI; cost $\$ 21.80$ per ton including details. The shop cost of the Basin \& Bay State smelter, weighing 270 tons, was $\$ 17.20$ per ton including details which cost $\$ 2.00$ per ton. The shop cost of six gallows frames made by the Gillette-Herzog Mfg. Co., varied from \$21,80 to \$41.80 per ton, with an average of \$32.20 per ton including details.

Cost of Erection.-With skilled labor at $\$ 3.50$ and common labor at $\$ 2.00$ per day of 9 hours, small buildings like those given in Table XXVI will cost about $\$ 10.00$ per ton for the erection of the steel framework, if trusses are riveted and all other connections are bolted. The cost of laying corrugated steel is about $\$ 0.75$ per square when laid on plank sheathing, $\$ 1.25$ per square when laid directly on the purlins, and $\$ 2.00$ per square when laid with anti-condensation roofing. The erection of corrugated steel siding costs from $\$ 0.75$ to $\$ 1.00$ per square. The cost of erecting heavy machine shops, all material riveted and including the cost of painting but not the cost of the paint, is about $\$ 8.50$ to $\$ 9.00$ per ton. Small buildings in which all connections are bolted may be erected for from $\$ 5.00$ to $\$ 6.00$ per ton. The cost of erecting the East Helena transformer building (next to the last building in Table XXVI) was $\$ 12.80$ per ton including the erection of the corrugated steel and transportation of the men. The cost of erecting the Carbon Tipple was $\$ 8.80$ per ton including corrugated steel. The cost of erection of the Basin \& Bay State Smelter was $\$ 8.20$ per ton including the hoppers and corrugated steel. The cost of erecting 6 gallows frames in Montana varied from $\$ 1$ I. 20 to $\$ 15.20$ per ton, with an average of $\$ \mathrm{I} 3.00$ per ton, all connections being riveted.

COST OF MISCELLANEOUS MATERIAL.-In making an estimate for a mill building the engineer needs to be familiar with the
costs of building hardware, lumber, etc. Prices of building hardware are usually quoted at a certain discount from standard lists. These standard lists and the discounts can be obtained from the dealers, or the method described in the following paragraph may be used.

The following method of obtaining costs of building hardware and other miscellaneous materials, has been found very satisfactory: Obtain standard lists from the dealers, or a very complete one entitled "The Iron Age Standard Hardware Lists" may be obtained from the David Williams Co., New York, for \$1.oo, postpaid. To find the current discount, consult the current number of the Iron Age, or a similar publication-the Iron Age is published by the David Williams Co., New York, at $\$ 5.00$ per year, or io cents per single copy, and gives each week the current hardware prices and discounts. By applying the discount to the prices given in the standard lists the current price of the material can be obtained. The standard lists of machine bolts, carriage bolts, nails, and turnbuckles are given for convenience in estimating and to illustrate what is meant by lists.

To illustrate the method just described the current prices (1903) will be obtained for a few items:

2-in. Barbed Roofing Nails.-The base price of nails is $\$ 2.65$ per keg of $100 \mathrm{lbs} .$, and from standard nail list (Table XXVIII) we see that 2 -in. barbed roofing nails take $\$ 0.35$ per 1oo lbs. advance over the base price making the price $\$ 3.00$ per 100 lbs .

Carriage Bolts. $-2^{1 / 2^{\prime \prime}} \times 1 / 2^{\prime \prime}$ carriage bolts are listed (Table XXVIII) at $\$ 3.00$ per 100 , from which a discount of 60 and $10 \%$ is allowed. A discount of 60 and $10 \%$ is equivalent to a discount of $64 \%$, making the price of the bolts $\$ 1.08$ per 100.

Machine Bolts. $-4^{\prime \prime} \times 1 / 2^{\prime \prime}$ machine bolts are listed (Table XXIX) at $\$ 4.90$ per 100, from which a discount of 65 and $5 \%$ is allowed. A discount of 65 and $5 \%$ is equivalent to a discount of $663 / 4 \%$, making the price of the bolts $\$ 1.36$ per 100. The weight of machine bolts and nuts is given, from which the price per lb . can be obtained for any size of bolt.

The following approximate prices of materials will assist in making preliminary estimates: rivets, $\$ 2.25$ to $\$ 3.00$ per 100 lbs ; ; boat spikes, $\$ 2.25$ to $\$ 3.00$ per 100 lbs .; washers, cut, $\$ 6.00$ per 100 lbs ; washers, cast, $\$ 1.50$ to $\$ 2.00$ per 100 lbs . ; sash weights, $\$ 1.00$ to $\$ 1.50$ per 100 lbs . ; pins $\$ 3.50$ to $\$ 4.00$ per 100 lbs . ; pin nuts, $\$ 4.00$ per 100 lbs. ; wire poultry netting, $\$ 0.50$ per square ; asbestos felt, 32 lbs . to the square, $\$ 2.75$ to $\$ 3.00$ per 100 lbs .; turnbuckles, $50 \%$ discount. Other prices and costs will be found in the descriptions of the various articles on the preceding pages.

## TABLE XXVIII.



Casing and Smooth Box Nails-(Extra per keg).
 Pinishing.........20d 12 \& $16 d$ 10d 8 \& 9 d 6 \& Fd 5 cd 4 d sd 2 d



Clinch .......... 20d $12 \& 10 d$ 10d 8 \& 04 6\&7d $4 \& 5 d$ ad $2 d$ (Extra per keg). 00 25 \begin{tabular}{llllllll}
\hline .35 \& .25 \& .45 \& .55 \& .65 \& .85 \& 1.05

 

Barbed Rooing. 2 in. \& 13 \& $11 / 2$ \& 14 \& i \& X \& 3/4 <br>
\hline (Extra per keg) \& 80.35 \& .45 \& .45 \& .55 \& .00 \& .65 \& .75
\end{tabular} Wire spikes, all sires........................... ........ ...... $10 c$ extre.

## LENGTH AND APPROXIMATE GAVGE OF COMMON

 WIRE NAILS.| 28 | 88 | 4 | 68 | 68 | 71 | 84 | 88 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Iin. } \\ & \text { No. } 15 \end{aligned}$ | $\begin{aligned} & 11 / 4 \\ & 16 \end{aligned}$ | $\begin{aligned} & 14 \% \\ & 124 \% \end{aligned}$ | $\begin{aligned} & 13 \\ & 1236 \end{aligned}$ | $\stackrel{2}{111 / 2}$ | $\begin{aligned} & 21 \% \\ & 11 \% / 2 \end{aligned}$ | $\begin{aligned} & 21 / 2 \\ & 10 \% \end{aligned}$ | $236$ |
| 10d | 12d | 18d | 201 | sod | 40d | \$0d | cod: |
| $\begin{aligned} & 8 \mathrm{in}, \\ & \text { No. } 9 \end{aligned}$ | $31 /$ | $\begin{gathered} 31 / 2 \\ 8 \end{gathered}$ | $8$ | $\frac{418}{5}$ | $\begin{aligned} & 5 \\ & 4 \end{aligned}$ | $3^{51 / 2}$ | 8 |

Turnbuckles.

2

| 䐻, |
| :---: |
|  |  |
|  |  |


| 츨 | 管 |
| :---: | :---: |
| 2\% | \$5.00 |
| 234 | 5.50 |
| 27/8 | 6.00 |
| 3 | 6.50 |
| 31/4 | 7.50 |
| 3\% | 8.00 |
| 3\%/6 | 9.00 |
| $31 / 2$ | 10.00 |
| 33 | 15.00 |
| 4 | 20.00 |



SPIKES, NAILS AND TACKS.

| STANDARD STEEL WIRE MAILS. |  |  |  |  |  | STEEL WIRE SPIKES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sines. | Length | Common. |  | Finishing. |  |  |  |  |
|  |  | $\begin{aligned} & \text { Diame, } \\ & \text { inches } \end{aligned}$ | $\begin{aligned} & \text { No. per } \\ & \text { pound } \end{aligned}$ | Dian. moler | $\begin{aligned} & \text { No. por } \\ & \text { pound. } \end{aligned}$ | Leagth | $\begin{aligned} & \text { Ding, } \\ & \text { inches. } \end{aligned}$ | $\begin{aligned} & \text { No. per } \\ & \text { pound. } \end{aligned}$ |
| 2 d | $1^{\prime \prime}$ | . 0524 | 1060 | . 0453 | 1558 | $3^{\prime \prime}$ | . 1620 | 41 |
| 3 d | $1 \chi^{\prime \prime}$ | .0588 | 640 | . 0508 | 913 | 31 " | . 1819 | 30 |
| 4 d | $1{ }^{\prime \prime}$ | .0720 | 380 | . 0508 | 761 | $4^{\prime \prime}$ | . 2043 | 23 |
| 5 d | $1{ }^{\prime \prime}$ | . 0764 | 275 | . 0571 | 500 | $41^{\prime \prime}$ | . 2294 | 17 |
| 6 d | $2^{\prime \prime}$ | . 0808 | 210 | . 0641 | 350 | $5^{\prime \prime}$ | . 2576 | 13 |
| 7 d | $2{ }^{\prime \prime}$ | . 0858 | 160 | . 0641 | 315 | $5{ }^{\prime \prime}$ | . 2293 | 11 |
| 8 d | $2{ }^{\prime \prime}$ | . 0935 | 115 | . 0720 | 214 | $6^{\prime \prime}$ | . 2893 | 10 |
| 9 d | $2^{\text {a }}$ | . 0963 | 93 | . 0720 | 195 | $61^{\prime \prime}$ | . 2249 | 7 |
| 10d | $3^{\prime \prime}$ | . 1082 | 77 | . 0808 | 137 | $7^{\prime \prime}$ | . 2249 | 7 |
| 12d | $3{ }^{\prime \prime}$ | . 1144 | 60 | . 0808 | 127 | $8^{\prime \prime}$ | . 3648 | 5 |
| $16 d$ | $3{ }^{\prime \prime}$ | . 1225 | 48 | . 0907 | 90 | $9^{\prime \prime}$ | . 3648 | $4 \frac{1}{1}$ |
| 20d | 4 | . 1620 | 31 | . 1019 | 62 |  |  |  |
| 30 d | $4{ }^{\prime \prime}$ | . 1819 | 22 |  |  |  |  |  |
| 40d | $5^{\prime \prime}$ | . 2043 | 17 |  |  |  |  |  |
| 50d | $5^{5 \prime \prime}$ | . 22294 | 13 |  |  |  |  |  |
| 60d | $6^{\prime \prime}$ | . 2576 | 11 |  |  |  |  |  |

## TABLE XXIX.

## MANUFACTURERS' STANDARD LIST OF MACHINE BOLTS WITH SQUARE HEADS AND SQUARE NUTS. FINISHED POINTS.

PRICE PER HUNDRED.
ADOPTED : ECPT. 20, 1933, TO TAKE EFFECT оСт. 1, 1093.

| Length Inches. | $\frac{1}{4} \frac{1}{15}$ | 言 18 |  | 18 \& | $\frac{3}{4}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 1.70 | $\overline{2.40} \overline{2.80}$ | 3.60 |  |  |  | $\overline{15.10}$ |
| 2 | 1.782 .1 | 2.563 .00 | 3.86 | 5.58 | 7.70 | 11.20 | 16.00 |
| $2{ }^{2}$ | 1.862 .2 | 2.723 .20 | 4.12 | 5.96 | 8.20 | 11.60 | 16.90 |
| 8 | 1.94,2.8 | 2.883 .40 | 4.38 | 6.84 | 8.70 |  | 17.80 |
| 81 | 2.022 .4 | 3.043 .60 | 4.64 | 6.72 | 9.20 | 13.80 | 18.70 |
| 4 | 2.103 | 3.203 .80 | 4.90 | 7.10 | 9.70 |  | 19.60 |
| 4 | 2.182 .7 | 3.364 .00 | 5.16 | 7.48 | 10.20 | 14.70 | 20.50 |
| 5 | 2.262 .8 | 3.524 .20 | 5.42 | 7.88 | 10.70 | 15.4 | 21.40 |
| 51 | 2.842 .9 | 3.684 .40 | 5.68 | 8.24 | 11.20 | 16.10 | 22.30 |
| 6 | 2.423 .08 | 3.844 .60 | 5.94 | 8.62 | 11.70 | 16.80 | 23.20 |
|  | 2.503 | 4.004 .80 | 6.20 | 9.00 | 12.20 |  | 24.10 |
| , | 2.588 .32 | 4.165 .00 | 6.46 | 9.38 | 12.70 | 18.20 | 25.00 |
| 71 | 2.863. | 4.325 .20 | 6.72 | 9.76 | 13.20 |  | 25.90 |
|  | 2.743 .5 | 4.485 .40 | 6.98 | 10.14 | 18.70 | 19.60 | 26.80 |
| 0 | 2.803 .8 | 4.805 .80 | 7.50 | 10.90 | 14.70 | 21.00 | 28.60 |
| 10 | 8.0 | 5.126 .20 | 8.02 | 11. | 15.70 | 22.40 | 30.40 |
| 11 | 8.22 4.28 | 5.446 .60 | 8.54 | 12.42 | 16.70 | 23.80 | 32.20 |
| 12 | 8.384.52 | 5.767 .00 | 9.06 | 18.18 | 17.70 | 25.20 | 34.00 |
| 18 |  | 6.087 .40 | 9.58 | 18.94 | 18.70 | 26.60 | 35.80 |
| 14 |  | 6.407 .80 | 10.10 | 14.70 | 19.70 | 28.0 | 37.60 |
| 15 |  | 6.728 .20 | 10.62 | 15.46 | 20.70 | 29.40 | 89.40 |
| 16 |  | 7.048 .60 | 11.14 | 16.22 | 21.70 | 80.80 | 41.20 |
| 17 |  |  | 11.661 | 16.98 | 22.70 | 32.20 | 43.00 |
| 18 |  |  | 12.18 | 17.74 | 23.70 | 33.60 | 44.80 |
| 19 |  |  | 12.70 | 18.50 | 24.70 | 35.00 | 46.60 |
| 20 |  |  | 13.22 | 19.26 | 25.70 | 38.40 | 48.40 |
| 21 |  |  |  |  | 26.70 | 37.80 | 50.20 |
| 28 |  |  |  |  | 27.70 | 39.20 | 52.00 |
| 23 |  |  |  |  | 28.70 | 40.60 | 53.80 |
| 24 |  |  |  |  | 29.70 | 42.00 | 55.60 |
| 25 |  |  |  |  | 30.70 | 43.40 | 57.40 |
| 26 |  |  |  |  | 31.70 | 44.80 | 59.20 |
| 27 |  |  |  |  | 32.70 | 46.20 | 61.00 |
| 28 |  |  |  |  | 33.70 | 47.60 | 62.80 |
| 29 |  |  |  |  | 34.70 | 49.00 | 64.60 |
| 30 |  |  |  |  | 35.70 | 50.40 | 66.40 |
| The rollowing extras are to be understood as a part of the Machine Boit List: <br> Boits with Hexagon Heads or Hexagon Nuls, 10 per cent extra. If both Hexagon Heads and Hexagon Nuts, 20 per cent extra. Joint Boits with Oblong Nuts, Bolts with Tee Heads, Askew |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Heads, and Eccentric Heads, 10 per cent extra. <br> Special Boits with irregular Threads and unusual dimensions of Heads or Nats will be charged extra at the discretiou of the manufactarer. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

AVERAGE WEIGHT OF SQUARE HEAD MACHINE BOLTS PER 100.

| Length. | DIAMETER. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% | A | \% | 3 | $1 /$ | \% | * | \% | 1 |
| 11/2 | 4.0 | 6.8 | 10.6 | 15.0 | 23.9 | 40.8 | 70.0 |  |  |
| 13 | 4.4 | 7.8 | 11.3 | 18.1 | 25.1 | 42.7 | 73.1 |  |  |
| 8 | 4.7 | 7.8 | 18.0 | 17.2 | 28.3 | 44.8 | 76.8 |  |  |
| 83 | 8.1 | 8.4 | 12.8 | 18.2 | 27.7 | 47.0 | 79.8 |  |  |
| $21 / 6$ | 8.4 | 8.9 | 13.3 | 19.2 | 29.0 | 49.2 | 82.4 | 120.8 |  |
| 83 | 6.8 | 10.6 | 14.0 14.7 | 21.8 | 30.4 31.8 | 81.4 83.5 | 85.5 88.7 | 124.7 |  |
|  | 6.8 | 10.0 11.1 | 14.7 18.0 | 21.8 28.8 | 31.8 34.7 | 83.5 87.9 | 88.7 | 128.9 | 186.0 196.0 |
| 4 | 7.5 | 12.2 | 17.4 | 2.2 | 37.5 | 62.3 | 101.2 | 145.8 | 207.0 |
| 41/2 | 8.2 | 18.2 | 18.7 | 27.2 | 40.2 | 66.7 | 107.5 | 159.8 | 218.0 |
| 6 | 8.9 | 14.3 | 20.0 | 29.1 | 43.0 | 21.0 | 118.7 | 167.7 | 229.0 |
| 51/ | 9.6 | 154 | 21.1 | 81.2 | 45.7 | 75.4 | 120.0 | 178.1 | 240.0 |
| 8 | 10.8 | 16.5 | 22.8 | 88.1 | 48.4 | 79.8 | 126.8 | 184.6 | 21.0 |
| 61 | 11.0 | 17.6 | 24.1 | 85.1 | 51.2 | 84.1 | 182.8 | 199.0 | 282.0 |
| 7 | 11.7 | 18.6 | 25.9 | 87.1 | 84.0 | 88.5 | 138.7 | 201.4 | 278.0 |
| 71/2 | 18.4 | 19.7 20.8 | 27.7 | 39.1 | 50.7 | 92.9 | 145.0 | 209.9 | 284.0 |
|  | 18.1 | 20.8 | 29.5 | 41.0 | 59.4 | 97.8 | 151.2 | 818.3 | 2\%9.0 |
| ${ }^{9}$ | . . . ${ }^{\text {a }}$ | .... | 83.1 | 45.0 | 64.8 | 108.0 | 163.7 | 240.8 | 817.0 |
| 10 | ...... | ..... | 36.7 | 49.0 |  | 114.7 | 178.8 | 257.1 | 889.0 |
| 11 | ..... |  | 40.4 | 83.0 | 75.8 | 128.5 | 188.7 | 273.9 | 800.0 |
| 12. | ... .. | ...... | 44.0 | $8 i .0$ | 81.8 | 188.2 | 201.0 | 290.0 | 388.0 |
| 18. |  |  |  |  | 88.7 | 140.7 | 213.4 | 307.7 |  |
| 14 | ..... . |  |  | .... | ${ }_{97}^{92.2}$ | 149.8 157.6 | 225.9 238.8 | 324.5 | \$4.0 |
| 18 |  |  |  | .. . | 97.7 103.1 | 157.6 18.1 | 238.8 250.8 | 341.4 | 448.0 |
| 17 |  |  |  |  | 108.6 | 174.6 | 263.8 | 375.2 | 498.0 |
| 18 |  |  |  |  | 114.1 | 183.1 | 275.6 | 302.0 | 514.0 |
| 19 |  |  |  |  | 119.5 | 191.5 | 288.1 | 408.9 | ${ }^{596.0}$ |
| 20 |  |  |  |  | 125.0 | 200.0 | 800.5 | 48.8 | 858.0 |
| Per aitlone | 1.4 | 2.8 | 8.6 | 4.0 | 5.5 | 8.5 | 12.4 | 16.0 | 22.0 |

APPROXIMATE WEIGHT OF NUTS AND BOLT HEADS, IN POUNDS.

| Dtam. of Bolt In fnches, | 3 | H | \% | \% | 1/2 | \% | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weight of Hexagon Nut and Head | . 017 | . 042 | . 057 | . 109 | . 128 | . $28 \%$ | . 43 |
| Weight of square Nut end Head ............ | . 021 | . 049 | . 069 | . 120 | . 164 | . 820 | . 55 |
| Diam of Bolt in lnches. | \% | 1 | 1\% | 11/2 | 1\% | 2 | 21/2 |
| Weight of Hexagon Nut and Head $\qquad$ | . 73 | 1.10 | 2.14 | 3.78 | 56 | 8.75 | 17 |
| Weight of Square Nut and Head $\qquad$ | . 88 | 1.61 | 2.56 | 4.42 |  |  | 21 |

## PART IV.

## Miscellaneous Structures.

The descriptions of the different structures given in this part have been abstracted from descriptions published in the Engineering News, Engineering Record, etc. Figs. 171 and 172 are from the Railroad Gazette ; and Fig. 169 and Figs. 172 to 181, inclusive, are reproduced from originals kindly loaned by the Engineering News.

Steel Dome for the West Baden, Ind., Hotel.*

The dome of the new hotel at West Baden, Ind., is remarkable for its size. This dome has a steel framework and is larger than any other ever built, its span exceeding by about 15 feet that of the Horticultural Building of the Chicago Exposition of 1893.

The dome is about 200 feet in outside diameter and rises about 50 feet above the bed plates. Its frame consists of 24 steel ribs, all connected at the center or crown to a circular plate drum, and tied together at the bottom by a circular plate girder tie. Each rib foots at its outside end on a built up steel shoe, resting on a masonry pier. The rib is connected to the shoe by a steel pin, and the outside plate girder toe is attached to the gusset plate at this point, just above the shoe. The shoes of all the girders are constructed as expansion bearings, being provided with rollers in the usual manner.

The dome is therefore virtually an aggregation of two-hinged arches with the drum at the center forming their common connection. Their thrust at the foot goes into the circular tie-girder, and only vertical loads (and wind loads) come upon the shoes and the bearing piers. At the same time any temperature stresses are avoided, since the expansion rollers under the shoes permit a uniform outward motion of the lower ends of all the ribs.

The outline of the dome and part of the dome framing are shown

[^22]
Fig. 169. Steel dome for west baden, ind., hotel.
in Fig. 169. The rise is between $1 / 4$ and $1 / 5$ of the span. The outline of the top chord approximates an elliptical curve, and the bottom chord is parallel to the top chord throughout its length, except in the three end panels on either side; the depth of the arch being io ft. back to back of chord angles. The web members are arranged as a single system of the Pratt type, with substruts to the top chord as purlin supports. In the end sections the arrangement is necessarily modified, the sharper curvature of the chords being allowed for by more frequent strutting.

The maximum stresses in the different members of the arch are given on the right half of the rib in Fig. 169. They are obtained by properly combining the dead load stresses with the stresses due to wind blowing successively in opposic directions in the plane of the rib in question. The loads used in the calculation were at dead load separately estimated for each panel point, a variable snow load, heaviest at the center of the roof, a wind load of 30 lbs , per sq . ft . on a normal surface reduced for inclination of the roof to the vertical. The makeup of the members is given on the left half of the rib in Fig. 169. In the plan part of the dome the method of bracing the ribs is fully shown. Successive pairs of ribs are connected by bays of bracing in both upper and lower chords. In the upper chord the I beam purlins are made use of as struts, angle struts being used in the lower chord. The bracing consists throughout of crossed adjustable rods. At the center, these rods are carried over to a tangential attachment to the central drum, so as to give more rigidity against twisting at the center.

The central drum, 16 ft . in diameter by io ft . deep, has a web of $3 / 8$ inch plate, with stiffener angles to which the ribs are attached. At top and bottom the drum carries a flange plate 24 ins. $\times 3-16$ ins. for lateral stiffeners. In addition it is cross braced internally by four diametrical frames intersecting at the center. The outer tie-girder, which takes the thrust of the arch ribs, is a simple channel-shaped plate girder, 24 ins. deep, as shown on the plan. The weight of the dome complete, including framework and covering was $475,000 \mathrm{lbs}$. This makes the dead load about 15 lbs . per square foot of horizontal projection of roof surface.

Mr. Harrison Albright, of Charleston, W. Va., was the architect of the building and the design of the steel dome was worked out by Mr. Oliver J. Westcott, while in charge of the estimating department of the Illinois Steel Company. The structural steel was furnished by the Illinois Steel Co.

## The St. Louis Coliseum.*

The St. Louis Coliseum Building is a rectangular brick building $186^{\prime} 2^{\prime \prime} \times 322^{\prime} 3^{\prime \prime}$. The steel framework is made entirely independent of the masonry walls and consists of three-hinged arches properly braced. The Coliseum has an area of $222 \times 112$ feet clear of the curb wall. Ordinarily there are seats for 7,000 persons on the main floor and the galleries, but for convention purposes with seats in the arena the number can be increased to 12,000 persons.

The steel framework consists of a central arched section adjoined at each end by a half dome formed by six radial arched trusses. The main arches forming the central section have a span $178^{\prime} 6^{\prime \prime}$ c. to c . of shoe pins, are spaced $36^{\prime} 8^{\prime \prime}$ apart, and are connected by lateral bracing in pairs. The pins at the foot of the arches are $47-16^{\prime \prime}$ diameter, and at the crown the pin is $25-16^{\prime \prime}$ diameter. The rise of the arches is $80^{\prime} 0^{\prime \prime}$, the lower chord points being in the curve of a true ellipse.

The end radial trusses correspond essentially to the semi-trusses of the main arches except for their top connection, where their top chords are attached to a semicircular frame supported by the end main trusses and designed to receive thrust, but no vertical reaction, as shown in Fig. 170.

The roof covering of asphalt composition is laid on $\mathrm{I} 3 / 8$-inch boards, resting on $21 / 2 \times 16$-inch wood joists, 3 feet apart and ceiled underneath. These, in turn, are carried by the steel purlins of the structure, which are spaced about 16 feet apart. The gallery floor beams are carried on stringers of 8 -inch channels spaced $3^{\prime} 8^{\prime \prime}$ center to center, carried by girders running between, and supported by the arches. The rear string'er is a plate girder; the front one is a latticed girder, the gallery beams running through the latter and cantilevering out $5^{\prime} 4^{\prime \prime}$. The main floor beams, supporting the lower tier of seats, consist of 9 -inch I beams, spaced $3^{\prime} 8^{\prime \prime}$ center to center, which are similarly carried on girders, and their lower ends rest on a brick wall.

[^23]

Figure 1. General Plan of Trusses \& Framing


## Main Arches

Figure 2 - Cross Section Showing Construction of Main Arches
Fig. 170.
The loads, in accordance with which the trusses were figured, are as follows:

Case I.
Wooden deck and gravel of roof........17.5 lbs. per sq. ft., vertically
$\qquad$
Snow and wind .....................25.0"،" ". "
Total ....................................55.0" " "، "


## Loads on Purlins.

Wooden deck and gravel of roof.. ........17.5 lbs. per sq. ft., vertically Steel ................................... $3 \cdot 5$ " "، ". "
Snow and wind .......................25.0 " " " " "

Total ..................................46.o" " "، "

Loads on Floor Beams, Girders and Columns of Main Floors.
Banks and galleries, beams . ............................. . i40 lbs. per sq. ft.
Banks and galleries, girders ............................ıı "، " "
Banks and galleries, columns ........................... 105 " " "
Attic floors beams, columns and girders............. 60 " " " "
For the main trusses, in addition to the stresses of Case II., there was added the stress due to the wind bracing between these trusses.

For the radial trusses, in addition to loading of Case II., there was assumed an additional load of 50,000 pounds supposed to act up or down at the upper point of truss; this load being what was assumed probable in case there was slight unequal settlement of the footings.

For the half ring connecting the tops of the radial trusses there was another case assumed, beside Cases I. and II.-viz., a thirust of 50,000 pounds at any point of the half ring; this being the thrust of a radial truss under its full live and wind load.

All the material used was of medium steel, excepting the rivets, which were made of soft steel. Both material and workmanship conform to manufacturer's standard specifications.

## Unit Strains.



Lateral connections have 25 per cent greater unit strains than the above.

In Case II of trusses, the above unit strains were increased onethird. The main and radial arch trusses are built as shown in Fig. 170 , except that above the haunches the ribs of the radial arches are T-shaped instead of I-shaped, i. e., they have no inside flanges. The purlins are triangular trusses $41 / 2$ feet deep, made of angles. The bracing between main arch trusses terminates at the bottom with heavy portal struts of triangular box section. The lateral rods are not carried to the ground on account of the obstruction they would make. The radial trusses are coupled together in pairs with lateral rods down to the ceiling line. The thrust due to wind is transmitted from them into the line of girders around the structure at this point, and into the adjoining floor systems. The compression ribs of the main and radial arches are stayed laterally by angle iron ties, connecting to the first panel-point in the bottom chord of the purlins. In the planes of the first diagonal braces of the trusses above the haunches, diagonal rods connect the bottom ribs of the trusses to the upper ribs of the next trusses. No struts were used between the bottom chords, as they would have been directly in the line of vision from the rear gallery seats to the farther end of the arena. The front and rear girders supporting the gallery and main floor beams are tied together with a triangular system of angle iron bracing.

To provide for expansion, the radial purlins and all the girders between the arches have slotted hole connections in every alternate bay. The diagonal rods between the two lines of ridge purlins were tightly
adjusted on a hot day. To prevent secondary strains in the half ring to which the radial trusses are connected at their tops, there is I-16-inch clearance in all the pin holes. There is also clearance between the pin plates, so that the trusses and the ring can slide a little sideways on their pins. The lines of the arch trusses were laid out full size and the principal points checked by independent measurements in the template shop, and the work was accurately assembled. In order to avoid the handling of large, heavy pieces before the drill press, the foot of the arch, through which the pin hole was bored, was made separately and afterward riveted on.

The total weight of the iron in the entire structure was $1,905,000$ pounds, as follows: Main arches, 64,000 pounds, each; radial arches 21,000 pounds, each; purlins between main trusses 1,450 pounds, each; main floor stringers 810 pounds, each; balcony floor stringers, 280 pounds, each; cast shoes 3,000 pounds, each. There were 4,188 days labor spent on the work in the shop and 3,550 days labor during erection, the average number of men in the erecting force being about 50. The stress diagrams and detail plans of the steel frame were made under the supervision of Mr. Stern, in the office of the Koken Iron Works, who were contractors for the ironwork, and were submitted for approval to the consulting engineer, Mr. Julius Baier, Asscc. M. Am. Soc. C. E. Mr. C. K. Ramsey was the architect of the Coliseum, and Mr. L. H. Sullivan was the consulting architect. Mr. A. H. Zeller was consulting engineer for the Board of Public Improvements ; Mr. J. D. McKee, C. E., was shop inspector, and the Hill-O'Meara Construction Company was the general contractor.

> The Locomotive Shops of the Atchison, Topeka and Santa Fe R. R., Topeka, Kas.*

This building is intended for all the locomotive work, including boilers and tenders. It is of particular note for its great size and the peculiar features of its design. In general plan it is 852 ft . long and 153 ft . Io ins. wide, the width being divided into a center span of 74 ft .3 ins. and two side spans of 39 ft .9 ins . It is of self-supporting steel frame construction, with concrete foundations and floor, $13-\mathrm{in}$. brick walls, and Ludowici tile roof. There is no sheathing under the tiles, which thus constitute the sole covering. The tiles are laid on $2 \times 2-\mathrm{in}$. timber strips to which every fourth tile is fastened by copper wire.

The most striking feature of the design is that the saw tooth or weaving shed type of roof is adopted for the side spans, the glazed vertical sides of the ridges facing northward. This feature was introduced with the view of making the shop as light as possible. The arrangement could not well be used where heavy snows are frequently experienced, as the snow would pack between the ridges, but there are comparatively few heavy snow storms in the vicinity of Topeka. In addition to this arrangement, the greater proportion of the area of the side walls is composed of windows, while the exposed parts of the sides of the central span (between the ridges of the side spans) are also glazed. There are also several windows in the end walls. The roof of the central span has on each side of the ridge a skylight 12 ft . wide, extending the full length of the building. These skylights are fitted with translucent fabric instead of glass. By these various means an exceptionally good lighting effect and diffusion of light are obtained and the shop is in fact remarkably light even on a gloomy day. There is no monitor roof, but ventilation is provided for by Star ventilators 25 ft . apart along the ridge of the main roof.

The columns are built up of pairs of $15-\mathrm{in}$. channels, and independent columns of similar construction carry the double-web box girder runways for the electric traveling cranes which run the entire length of the central span. Fig. 173 shows the elevations, sections and plans

[^24]

Fig. 171. Locomotive shop.


Fig. i72. Cross-section locomotive shop.
of the steel structural framework, and Fig. 174 is a partial elevation on the east side. Fig. I75 shows the design of the central roof trusses and the lattice girders which form longitudinal bracing between the trusses. This longitudinal bracing is not continuous but is fitted only between
alternate pairs of trusses. End trusses are built into the walls, as these walls are pierced by numerous windows and doors and are not relied upon in any way to support the roof. Portal bracing is fitted between the side or wall columns at intervals. No metal less than $3 / 8$-in. thick is used in the structural work.


$P \mid a n$


Fig. 173. Part elevations and plans of steel structural work of New locomotive shops.

The roof trusses are proportioned for a load of 15 lbs . per sq. ft . for the weight of the roofing, io lbs. per sq. ft. for snow, and 25 lbs . per sq. ft . for wind pressure, or 50 lbs . per sq. ft . in all. The members


Fig. 174. Half east elevation of new locomotive shop. (SHowing riveting tower and weaving shed roof.)
were calculated on a basis of $16,000 \mathrm{lbs}$. per sq. in. for tension and 14,000 lbs. per sq. in. for compression. Provision for expansion and contraction is made at intervals of 100 ft . The structural work for this shop was built at the Toledo Works of the American Bridge Co. The steel is painted a light grey, and the brick is whitewashed, a pneumatic machine being used for the latter work.


Fig. 175.
The arrangements for lighting the shop by day have already been referred to. For night work there will be arc lights for general lighting and incandescent lamps convenient to the tools, etc. The building is heated by the Sturtevant hot blast system. On each side are two fan rooms, each containing a steam-driven blower fan and a heating
chamber filled with coils of pipe through which passes the exhaust steam. The hot air is delivered into two longitudinal underground conduits parallel with the lines of columns, with a duct leading to the surface at each column. Each duct is fitted with a vertical sheet iron pipe 7 ft . high, with a flaring head to deliver the air horizontally. The plant is guaranteed to maintain a temperature of $70^{\circ} \mathrm{F}$. throughout the shop in zero weather.

The floor foundation is formed of 6 inches of concrete resting on the natural soil well tamped. The concrete is composed of I part Louisville cement, 2 parts sand and 4 parts stone. On the concrete are laid yellow pine nailing strips, $3^{\prime \prime} \times 4^{\prime \prime}, 18$ ins. c. to $c$., to which is spiked the $13 / 4-\mathrm{in}$. splined hard-maple flooring. All tracks in the shop are laid with $75-\mathrm{lb}$. rails on ties of New Mexico pine treated by the zinc-chloride process, the floor concrete being laid only to the ends of the ties, so that adjustment of the track can be made without tearing up the floor. At the engine pits (which are of concrete) the rails are laid on longitudinal timbers. The concrete for column foundations is composed of I part Iola Portland cement, 3 parts sand and 5 parts stone. These foundations are 8 to 15 ft . deep, extending to solid clay. They are built up with gas pipe sleeves to form holes for the anchor bolts, and the holes in the bed plates of the columns are slotted longitudinally so as to allow of adjustment for any slight variation. The foundations for the tools, etc., are also of Portland cement concrete, and these are built by the mechanical department to suit its own requirements as to arrangement of tools. This arrangement was only arrived at after careful study, and of course no changes can be made without expensive work in cutting out and replacing concrete. One suggestion for the floor construction was to use a brick floor with no concrete, so as to allow for future changes and putting in new foundations.

## The Locomotive Erecting and Machine Shop, Philadelphia \& Reading R. R., Reading, Pa.*

The combined machine and erecting shop is $204 \mathrm{ft} .4^{\mathrm{T}} 2 \mathrm{ins}$. wide and 749 ft . Io ins. long, with provision made for its extension to a total length of $1,000 \mathrm{ft}$. At its present length it has repair pits for 70 locomotives, and the proposed extension will provide for 30 pits more. Fig. 176 shows the general arrangement of the shop in plan, and Fig. 177 is a transverse section showing the general character of the construction.

The building, it will be observed, is divided transversely into three bays by means of two rows of intermediate columns running lengthwise of the building. These intermediate columns and the side wall columns carry the roof trusses and the overhead cranes, and are spaced 20 ft . apart longitudinally. The walls of the building are entirely independent of the steelwork. Considering the building transversely it will be observed that the two side bays contain the repair pits; one pit be-


Fig. 176. Part plan, showing pit and column arrangement.
*Engineering News, May 24, 1900.
tween each pair of columns, 35 pits on each side spaced 20 feet apart c. to c. Over each side bay there are two traveling crane tracks, one above the other. The top track will be for a crane of 120 tons capacity, capable of lifting a locomotive and carrying it the entire length of the building at a height great enough to clear the locomotives standing on the repair pits beneath. On the lower track there will be placed a number of 35 -ton cranes for handling parts of locomotives and material. The middle bay composes the machine shop, and it is also covered by a track for a number of traveling bridge cranes of 10 tons capacity each. A material track runs lengthwise of the middle bay at the center, and for bringing the locomotives into the shop there is a track extending transversely through the shop at each end. These transverse tracks connect by means of turntables with a yard track running parallel with the east side of the shop.

Taking up the construction in detail, the steelwork is the first part perhaps to demand attention. As already stated, the nature and general arrangement of the steel frame is shown by Figs. 176 and 177. It may be divided into two parts for description. The first part comprises


Fig. i77. Transverse section of framework.
the main columns and the traveling crane track system which they support directly, and the second part comprises the roof framing. Considering the construction of the main columns first, it will be seen that it had to be devised to withstand an unusually severe combination of loads, including not only the dead and wind loads usual to all building frames, but also a very heavy concentrated moving load from the traveling cranes. Careful attention was also required to provide means for longitudinal expansion of the columns and crane track girder system and still preserve the utmost stiffness possible in the heavily loaded crane tracks.

The interior and wall columns were substantially similar in construction, both being composed of two channel sections made up of plates and angles, held together by a double lacing of $21 / 2 \times 1 / 2-\mathrm{in}$. bars. Fig. 180 shows the column construction in detail. Each column is founded on a concrete pier with a granite capstone. The concrete in these piers and for all other foundation work was composed of I part Portland cement, 2 parts clean sharp sand and 5 parts stone broken to pass a 2 -in. ring. In making the concrete the sand and cement will first be mixed dry and then wet, and the wet mortar will then be mixed with the broken stone as it comes moist from washing. The shape of the column piers is indicated in Fig. 177, and the columns are fastened to them by four anchor bolts for each column. The columns are finished by milling machine at both top and bottom, and are capped and stiffened at the tops to provide a bearing for the $4-\mathrm{ft} . \mathrm{I} 3 / 8-\mathrm{in}$. plate girders carrying the 120 -ton crane tracks.

The track construction for the bridge cranes is shown in detail in Figs. 177 and 180 . As already stated, the tracks for the 120 -ton cranes are carried on plate girders resting directly on the tops of the columns, and running lengthwise of the building. These track girders are 4 ft . $\mathrm{I} 3 / 8$ ins. deep back to back of flange angles and have spans of 20 ft ., c. to c. of columns. They are milled square at the ends and the rivets of the end angles have flat heads. To allow for expansion the ends are not butted close together, but are separated by a clear space of $1 / 4-\mathrm{in}$., by the construction shown in Fig. 180. From the drawing it will be seen that each girder span has one fixed and one expansion end, the expansion being provided for by the slotted rivet holes in the bearing plate and by the space between the ends of the girders. An exactly similar expansion end construction is provided for the girders carrying the tracks for the 35 -ton and io-ton cranes. These three tracks are on the same level and the girders supporting them are carried by Brackets on the main columns. This bracket and girder construction is shown in Fig. 177.

The crane tracks proper consist of ordinary railway rails laid directly on the special cover plate forming part of the top flange of each track girder, to which they are attached by stamped steel clips riveted to the cover plate. For the 120 -ton cranes the rails weigh 150 lbs . per yard, for the 35 -ton cranes they weigh 85 lbs . per yard, and for the $10-$ ton cranes they weigh 70 lbs . per yard. The joints are located over the expansion joints at each column and are spaced $1 / 8-\mathrm{in}$. open, the angle
splices for the rails being arranged to permit expansion and contraction. The rails were rolled to the recommended Am. So. C. E. sections for their respective weights. The specifications require that the crane track rails must be in perfect alinement horizontally and vertically and that the gage must not vary more than $1 / 4-\mathrm{in}$. at the maximum. To obtain vertical alinement it is specified that not more than $1 / 8$-in. thickness of shims, each the full size of the bearings, shall be placed between the column top and the girder. The idea, it will be seen, has been to provide for the heavy rolling loads by substantial construction and accurate workmanship, and to keep the track smooth and rigid by distributing the expansion over a number of joints instead of having all the allowance made for it at one or two points.

Turning now to the roof framing, it will be seen from Fig. 177 that there is a separate roof over each longitudinal bay of the building. The roof trusses for the middle bay rest directly on the tops of the intermediate rows of columns, but those for the two side bays are carried by special roof columns rising from the main columns, as shown by Fig. 180. The trusses in each bay are connected by purlins and lateral bracing and carry lantern roofs with glazing. Details of the roof trusses, bracing and lantern roof construction are shown in Fig. i78 so fully as to make any further description unnecessary. The roof covering and the glazing in the lanterns, however, deserve brief special notice.

The roof covering consists first of a $\mathrm{I} \times 8$-in. hemlock sheathing, having its upper surface planed. This sheathing is to be covered by four thicknesses of roofing felt spread with granulated slag. The construction is specified to be as follows: Make the outside course next the edge of five thicknesses of felt, then lay each succeeding layer at least three-fourths of its width over the preceding layer, firmly securing it in place, and thoroughly mop the surface underneath each succeeding layer as far back as the edge of the next lap with a thin coating of roofing cement. This cement is in no case to be applied hot enough to injure the wooly fibre of the felt. At least 70 lbs . of felt must be used per 100 sq . ft. of roof. Over the entire surface of the felt laid as described there is to be spread a good coating of cement, not less than io gallons (including what is used between the layers of felt) of cement being employed per 100 sq . ft . of roof. This cement coating is to be covered with a coating of slag, granulated and bolted for the purpose, using no slag larger than will pass through a $5 / 8-\mathrm{in}$. mésh and none smaller than will be caught by a $1 / 4-\mathrm{in}$. mesh. This slag must be free
from sand, dust and dirt and must be applied perfectly dry while the cement is hot.

The structural features of the glazing in the windows and lights of the monitor roofs are fully shown by the drawing of Figs. 177 and 178. It will be noted that the sash in the side walls of the monitor roofs are hung on pivots at the middle of each side. There is a similar arrangement of sash in the upper side wall windows of the side roofs overlooking the low middle roof, except that the sash in alternate bays only are pivoted. These latter sash are to be provided with "Brand's" sash openers, with chains operated from the crane runways and arranged to open all the sash of one bay at one time. The feature most worthy of note, however, is that the sash in the side walls of the monitor roofs are to be operated by compressed air power from a central point on one of the side walls of the building near the floor. The sash will be operated in sections about 75 feet long and the piping and valves will be so arranged that any one or all of the sections can be operated at one time.

Next to the framework of the building, the structural features of most interest are perhaps the pit and floor construction. This is shown in detail by Fig. 180. In constructing the floor the ground inside the building will be carefully leveled and well tamped and puddled if necessary. The entire area of the main building, except under the pits, where cement concrete will be used, and under the railway tracks, where stone ballast will be used, will then be covered with a layer of bituminous concrete. This concrete will be composed of well screened cinders and No. 4 coke oven composition mixed in the proportion of at least one gallon of composition for each cubic foot of cinders. This composition is to be laid hot and well rammed. Yellow pine floor sleepers, $6 \times 6$ ins. square, will be bedded in the bituminous concrete at intervals varying from 4 ft . to 5 ft . transversely of the building. To these stringers there will be spiked an under floor, or lining, of hemlock plank planed on both edges and on the upper side. On top of this lining there will be laid a flooring of $11 / 8 \times 4$-in. maple boards of a uniform and regular width, planed on top and both edges, worked on the back to a depth of $1-16-\mathrm{in}$. and a width of $23 / 4$ ins., laid across hemlock floor, bored on a slant for nailing and face nailed with 12 d . nails, the two lines of nails in each board being staggered. The nails will be placed in lines on each side of the board and not over 16 ins. apart, and the nails in one line will be opposite the middle point between the nails in the opposite line.

The sidewalls and bottoms of the pits are made of cement concrete of the composition already described as being employed in the foundations for the main columns, Fig. 180, and have a facing of I in. of cement. It will be noticed that the bottoms of the pits are crowned transversely and have longitudinal side drains of "catch basin" type, running into gutters which connect with the tile drain pipe system of the building. The pit rails are carried on $10 \times 12$-in. yellow pine side timbers resting on the concrete pit walls and connected by anchor rods extending into the bituminous concrete floor foundation. The railway tracks in the building consist of $80-1 \mathrm{lb}$. rails spiked to cross-ties laid in stone ballast.

Before taking up the exterior construction of the building, a brief reference may be made to the method adopted for heating it. By referring to Figs. 176 and 177 it will be noticed that an urderground duct extends along each side of the buildings. This duct will contain all the steam; air and other piping entering the building and will also serve as a hot-air duct for heating the building. For the latter purpose the duct connects with fan houses placed at intervals along the side of the building, there being four fan houses on the west side and three on the east side. It is expected that the exhaust steam will be ample to heat the building. The general principle of the operation of the heating apparatus is to use the air over and over again, depending upon the natural ventilation to keep it fresh. Structually the ducts are simple, their bottoms and side walls being of concrete with a cement plaster, and the roof being expanded metal and concrete supported by transverse roof beams. The roofs of the fan houses will consist of I beams carrying T-iron purlins holding book tile, which in turn carry a felt and slag roofing similar to that already described for the main building.

From the structural point of view, the wall construction of the main building presents nothing that is particularly notable. These walls are of brick masonry resting on a concrete footing and are anchored to the wall columns, as shown by Fig. 178, but they are independent structures, receiving no support from these columns. The entire wall area is pretty well taken up with doors and windows, there being one in each panel or between each pair of wall columns. This introduces a considerable amount of arch work, but nothing that is of unusual character.

To illustrate the simple methods which have been adopted to secure a pleasing exterior appearance for the building, the typical details of the wall construction are shown in Fig. 179.




## The New Steam Engineering Buildings for the Brooklyn Navy Yard.*

The new buildings constructed for the steam engineering department of the Brooklyn Navy Yard, at New York City, to take the place of the buildings destroyed by fire on Feb. 15, 1899, consist of a machine shop, an erecting shop and a boiler shop, arranged to occupy a U-shaped area. The erecting shop is $130 \times 252 \mathrm{ft}$., the machine shop is $130 \times 350 \mathrm{ft}$., and the boiler shop is $96 \times 300 \mathrm{ft}$.

The general framework details of the machine, and the erecting shops are shown by Fig. 181. The construction of the boiler shop is similar, but the dimensions are, of course, smaller. Referring to the drawings of Fig. 181, it will be observed that the buildings are divided transversely into three bays, a center bay 70 ft . wide and two $30-\mathrm{ft}$. side bays. The two side bays are covered by shed roofs, above which rise a clerestory and gable roof to cover the center bay. The side wall columns are 12 - in. I beams filled between with a brick wall for a height of about 4 ft ., and above this point covered with glazing to the cornice line. The intermediate columns are of lattice and channel construction, and are 43 ft .6 ins. high, reaching to the level of the junction of the shed roof and the clerestory. They carry between them, longitudinally of the buildings a double intersection truss 15 ft . deep, and support a box girder crane runway and the roof columns of the clerestory.

The framework is entirely of steel of from $60,000 \mathrm{lbs}$. to 70,000 lbs. ultimate strength, and an elastic limit of one-half the ultimate strength. The specifications for workmanship and other essentials correspond to ordinary first-class practice in these respects. The notable feature of the building is the extent to which glazing has been employed in the side walls and roofing, rather than ir any novelty in the framework structure.

The foundations consist of concrete column pedestals carried on piles, the column base plates being anchor-bolted directly to the concrete. The concrete used was mixed according to the Navy Yard specifications, which require that the cement exceed the voids in the sand about $25 \%$, and that the dry mixture of cement and sand exceeds
*Engineering News, April 25, 1901.
the voids in the aggregate about $25 \%$. The piles were driven to a final penetration of $I \mathrm{in}$. under a $3,000-\mathrm{lb}$. hammer falling I 5 ft . The usual requirements as to soundness of timber and character of cement, sand, aggregate and water were enforced.

The side wall construction for the shed bays, as already stated, consists of a brick base wall with glazing above. This glazing is put


Fig. 18i. Half transverse section showing steel frame details, STEAM ENGINEERING BUILDINGS, BROOKLYN NAVY Yard.
on in panels or sections; each is capable of being swung out to provide ventilation. The side walls of the clerestory consist of corrugated iron covering for the lower part, and glazing above. The bulk of the area of the shed roofs is skylight, and wide skylights are also placed in the clerestory roof. Fully 60 per cent of the area of the external walls and roof is glazed.

The large proportion of glazing to the total wall and roof area makes the interior of the shops extremely well-lighted. The entire glazing is on the Paradigm skylight and side light system and was carried out by Arthur E. Rendle, of New York City, who controls the system.

The entire construction is of incombustible materials. There is no wood used in the building, except for the body of the doors, and here it is covered with tin plate. In this respect, and in respect to the amount of glazing used, the buildings are somewhat remarkable, even among modern shop buildings.

Turning now to some of the special details, it will be noticed from Fig. I8I that a somewhat unusual construction has been adopted for the main columns. Each column consists of two main members, each composed of two channels riveted back to back, the two main members being connected by double latticing. The resulting section is rather remarkable for its length, as compared with its width, but its purpose was evidently to give ample flexural strength to withstand eccentric load of the bridge crane girders. Details of the crane girders and crane tracks are shown by Fig. 181; there being one 40-ton crane and two io-ton cranes. It will also be observed from Fig. 181 that the lower portion of the clerestory roof has a concrete and expanded metal covering with roofing slate nailed direct to the concrete. The concrete is composed of Portland cement and cinder, and is $31 / 2$ ins. thick. The floor construction throughout will be io ins. of concrete covered with I in. of granolithic or Kosmocrete. In the tool and testing rooms off the machine shop, and between the boiler and erecting shops, an effort has been made to secure a dust-proof construction, and a roof which will be free from drippings due to condensed moisture. Over these rooms the skylight roofs consist of double-glazed Paradigm skylights, with a I-in. air space betwen them.


Fig. i82.* Steel rolling mill building for the american rolling MILL COMPANY, MIDDLETOWN, OHIO.
*Engineering Record, July 20, 1901.

## Government Building, St. Louis Exposition.*

The Government Building at the St. Louis Exposition had a steel framework with steel arch trusses of the three-hinged type. The span of the arches is $172 \mathrm{ft} . \mathrm{c}$. to c . of pins, and their rise from heel pins to center pins is $66 \mathrm{ft} .9 \mathrm{t} / 2 \mathrm{in}$. The trusses are spaced 35 ft . apart, and are connected laterally by six lines of lattice girders, carrying the posts of the main roof and monitor roof, and by eight other intermediate transverse struts. A horizontal wind strut truss is located as shown in Fig. 184.

The assumed loading was as follows: Dead Load: Roof, io lbs. per sq. ft. on slope; dome, 12 lbs . per sq. ft. of roof surface; side walls of dome and building, 15 lbs . per sq. ft . of surface; trusses, 10 lbs. per sq. ft. of floor surface.

Wind Load: Side walls, 20 lbs . per sq. ft.; dome, curved, 15 lbs . per sq. ft. of projection on a vertical surface.

Snow Load: On roof of main building, 20 lbs . per sq. ft. horizontal ; reduced to io lbs. per sq. ft . on ventilator over center.

The revised estimate of loads for a $35-\mathrm{ft}$. bay figured out as follows, per sq. ft. of horizontal projection :

Lbs. per sq. ft.
Weight of steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 .I
" "roof ........................................................... 6.6
" " tin covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5
Actual roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2
Calculated total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 5
The loading on one truss for the $35-\mathrm{ft}$. bay was:

Actual Weight in lbs. Estimated Weight in lbs

| Total Dead Load. | 40,500 | 70,000 |
| :---: | :---: | :---: |
| Total Steel | 80,000 | 64,000 |
| Grand Total | 120,500 | 134 |

The arches are built up of channels, plates and angles, and have $4^{1 / 2}-\mathrm{in}$. shoe pins and 3 -in. center pins. The shoe pins of each truss are connected by a tie bar consisting of a line of 9 -in. I-beams. The stresses in the arches are given in Fig. 183, while the details are shown in Fig. 184.

[^25]


Fig. 184. Details of Arch.

Reinforced Concrete Round-house for the Canadian Pacific Railway at Moose Jaw, Canada.*
The round-house is annular in plan and occupies a half circle, the diameter of which is $350^{\prime} 5^{\prime \prime}$. The radial width of the house is 80 feet, and it has 22 stalls divided into two groups of II stalls each, by a radial fire wall. Each stall subtends an outside wall space of $25^{\prime}$.


Fig. 185. Cross Section of Reinforced Concrete Round-house.
The end walls, fire wall and outside wall are of plain concrete, the latter being enlarged by buttresses or pilasters between stall spaces to carry the outer ends of the radial roof girders, which are further supported by an outside wall column, and two intermediate columns. The combined roof, wall and column construction is shown in Fig. 185.

Each radial girder consists of an $18^{\prime \prime} @ 55 \mathrm{lbs}$. I-beam encased in concrete as shown in Fig. 186, and is supported by an outside wall pier and three I-beam columns enclosed in concrete as shown in Fig. 187. The space between the main roof girders is spanned by reinforced concrete beams, carrying a reinforced roof slab and a suspended


Fig. 186. Cross Section Showing Construction of Roof Slabs.

[^26]

Fig. 188. Holes in Roof for Smoke Jack.

Fig. 187. I-Beam Column.
metal lath and plaster ceiling as shown in Fig. 186. The main girders and the angles which knee-brace them to the columns are like the columns, encased in concrete. There is, therefore, no unprotected structural metal in the round-house.

The reinforced concrete beams shown in Fig. 186 are of uniform depth, but vary in width and amount of reinforcement with the span and are composed of $1-3-5$ Portland cement, gravel concrete.

The beam reinforcement consists of plain rods attached to the beams as shown in Fig. 186. The roof slabs are composed of cement and washed cinders, and the ceiling slab consists simply of expanded metal wired to the beams and given two coats of cement plaster, the first coat containing enough lime to make it work well under the trowel, and the second coat being a I cement to I sand mortar.


Titg. I89. Forms for Reinforced Concrete Roof.

It should be noted that no joints have been provided in the roof to accommodate expansion and contraction. No cracks appeared during the first year, and none are expected to appear.

The roof is reinforced where the metal smoke jacks are located, as shown in Fig. 185 and Fig. 188.

The forms used in constructing the roof are shown in Fig. 189. The round-house is standard for the Canadian Pacific Railway, and cost $\$ 3,000$ per stall.

## APPENDIX I.

# GENERAL SPECIFICATIONS FOR STEEL FRAME BUILDINGS. 

BY

MILO S. KETCHUM, M. Am. Soc. C. E.

SECOND EDITION.
1912.

## SPECIFICATIONS FOR STEEL FRAME BUILDINGS.

GENERAL DESCRIPTION.

r. Height of Building.-The height of the building shall be the distance from the top of the masonry to the under side of the bottom chord of the truss.
2. Dimensions of Building.-The width and length of the building shall be the extreme distance out to out of framing or sheathing.
3. Length of Span.-The length of trusses and girders in calculating stresses shall be considered as the distance from center to center of end bearings when supported, and from end to end when fastenèd between columns by connection angles.
4. Pitch of Roof.-The pitch of roof for corrugated steel shall preferably be not less than $\frac{1}{4}$ ( $6^{\prime \prime}$ in $12^{\prime \prime}$ ), and in no case less than $\frac{1}{5}$. For a pitch less than $\frac{1}{5}$ some other covering than corrugated steel shall be used.
5. Spacing of Trusses.-Trusses shall be spaced so that simple shapes may be used for purlins. The spacing should be about 16 feet for spans of, say, 50 feet and about 20 to 22 feet for spans of, say, 100 feet. For longer spans than 100 feet the purlins may be trussed and the spacing may be increased.
6. Spacing of Purlins.-Purlins shall be spaced not to exceed $4^{\prime} 9^{\prime \prime}$ where corrugated steel is used, and shall be placed at panel points of the trusses.
7. Form of Trusses.-The trusses shall preferably be of the Fink type with panels so subdivided that panel points will come under the purlins. If it is not practicable to place the purlins at panel points, the upper chords of the trusses shall be designed to take both the flexural and direct stresses. Trusses shall preferably be riveted trusses.
8. Bracing.-Bracing in the plane of the lower chords shall be stiff; bracing in the planes of the top chords, the sides and the ends may be made adjustable.
9. Proposals.-Contractors in submitting proposals shall furnish complete stress sheets, general plans of the proposed structures giving
sizes of material, and such detail plans as will clearly show the dimensions of the parts, modes of construction and sectional areas.
io. Detail Plans.-The successful contractor shall furnish all working drawings required by the engineer free of cost. Working drawings will, as far as possible, be made on standard size sheets $24^{\prime \prime}$ $\times 36^{\prime \prime}$ out to out, $22^{\prime \prime} \times 34^{\prime \prime}$ inside the inner border lines.
II. Approval of Plans.-No work shall be commenced or materials ordered until the working drawings are approved in writing by the engineer. The contractor shall be responsible for dimensions and details on the working plans, and the approval of the detail plans by the engineer will not relieve the contractor of this responsibility.

Loads.
12. The trusses shall be designed to carry the following loads:
13. DEAD LOADS. Weight of Trusses.-The weight of trusses per square foot of horizontal projection, up to 150 feet span shall be calculated by the formula

$$
W=\frac{P}{45}\left(\mathrm{I}+\frac{L}{5 V A}\right)
$$

where $W=$ weight of trusses per square foot of horizontal projection;
$P=$ capacity of truss in pounds per square foot of horizontal projection;
$L=$ span of the truss in feet;
$A=$ distance between trusses in feet.
14. Weight of Covering. Corrugated Steel.-The weight of corrugated steel shall be taken from Table I.

TABLE $I$.
Weight of Flat and Corrugated Steel Sheets with $2 \frac{1}{2}$-inch Corrugations.

| Gage No. | Thickness in Inches. | Weight per Square (roo Sq. Ft.). |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Flat Sheets. |  | Corrugated Sheets. |  |
|  |  | Black. | Galvanized. | Black Painted. | Galvanized. |
| 16 | . 0625 | 250 | 266 | 275 | 291 |
| 18 | . 0500 | 200 | 216 | 220 | . 236 |
| 20 | . 0375 | 150 | 166 | 165 | 182 |
| 22 | . 0313 | 125 | 141 | 138 | 154 |
| 24 | . 0250 | 100 | 116 | III | 127 |
| 26 | . 0188 | 75 | 91 | 84 | 99 |
| 28 | . 0156 | 63 | 79 | 69 | 86 |

When two corrugations side lap and six inches end lap are used, add 25 per cent to the above weights; when one corrugation side lap and four inches end lap are used, add 15 per cent to the above weights to obtain weight of corrugated steel laid. For paint add 2 pounds per square. The weight of covering shall be reduced to weight per square foot of horizontal projection before combining with the weight of trusses.
15. Slate. -Slate laid with 3 inch lap shall be taken at a weight of $7 \frac{1}{2}$ pounds per square foot of inclined roof surface for $\frac{3}{16}{ }^{\prime \prime}$ slate $6^{\prime \prime}$ $X I 2^{\prime \prime}$, and $6 \frac{1}{2}$ pounds per square foot of inclined roof surface for $\frac{3^{\prime \prime}}{16}$ slate $12^{\prime \prime} \times 24^{\prime \prime}$, and proportionately for other sizes.
16. Tile.-Terra-cotta tile roofing weighs about 6 pounds per square foot for tile I inch thick; the actual weight of tile and other roof coverings not named shall be used.
17. Sheathing and Purlins.-Sheathing of dry pine lumber shall be assumed to weigh 3 pounds per foot and dry oak purling 4 pounds per foot board measure.
18. Miscellaneous Loads.-The exact weight of sheathing, purline, bracing, ventilators, cranes, etc., shall be calculated.
19. SNOW LOADS.-Snow loads shall be taken from the dagram in Fig. i.


Fig. i. Snow Load on Roofs for Different Latitudes, in Lbs. per Square Foot.
20. WIND LOADS. -The normal wind pressure on trusses shall be computed by Duchemin's formula, Fig. 2, with $P=30$ pounds per square foot, except for buildings in exposed locations, where $P=40$ pounds per square foot shall be used.
21. The sides and ends of buildings shall be computed for a normal wind load of 20 pounds per square foot of exposed surface for buildings 30 feet and less to the eaves; 30 pounds per square foot of exposed surface for buildings 60 feet to the eaves, and in proportion for intermediate heights.


Fig. 2. Normal Wind Load on Roof According to Different Formulas.
22. Mine Buildings.-Mine, smelter and other buildings exposed to the action of corrosive gases shall have their dead loads increased 25 per cent.
23. Concentrated Loads.-Concentrated loads and crane girders shall be considered in determining dead loads.
24. Purlins.-Purlins shall be designed to carry the actual weight of the covering, roofing and purlins, but shall always be designed for a normal load of not less than 30 lbs . per square foot.
25. Girts.-Girts shall be designed for a normal load of not less than 25 lbs . per square foot.
26. Roof Covering.-Roof covering shall be designed for a normal load of not less than 30 lbs . per square foot.
27. Minimum Loads.-No roof shall, however, be designed for an equivalent load of less than 30 pounds per square foot of horizontai projection.
28. Loads on Foundations.-The loads on foundations shall not exceed the following in tons per square foot:
Ordinary clay and dry sand mixed with clay ..... 2
Dry sand and dry clay ..... 3
Hard clay and firm coarse sand ..... 4
Firm coarse sand and gravel ..... 5
Shale rock ..... 8
Hard rock ..... 20

For all soils inferior to the above, such as loam, etc., never more than one ton per square foot.
29. Stresses in Masonry.-The allowable stresses in masonry shall not exceed the following:

|  | Tons per Sq. Ft. | Lbs. per Sq. In. |
| :---: | :---: | :---: |
| Common brick, Portland cement mortar | 12 | 168 |
| Hard burned brick, Portland cement mortar | 15 | 210 |
| Rubble masonry, Portland cement mortar | 10 | 140 |
| First class masonry, crystalline sandstone or | . 25 | 350 |
| First class masonry, granite | 30 | 420 |
| Portland cement concrete, $\mathrm{I}-3-5$ | 20 | 280 |
| Portland cement concrete, $\mathrm{I}-2-4$ | . 30 | 420 |

30. Pressures on Masonry.-The pressure of column bases, beams, etc., on masonry shall not exceed the following in pounds per square inch.
Brick work with cement mortar ..... 250
Rubble masonry with cement mortar ..... 250
Portland cement concrete, $1-2-4$ ..... 500
First class dimension sandstone or limestone ..... 400
First class granite ..... 500
31. Loads on Timber Piles.-The maximum load carried by a pile shall not exceed $40,000 \mathrm{lbs}$., or 600 lbs . per sq. in. of its average crosssection. The allowable load on piles driven with a drop hammer shall be determined by the formula $P=\frac{2 W \cdot h}{s+1}$. Where $P=$ safe load on
pile in tons; $W=$ weight of hammer in tons; $h=$ free fall of hammer in feet; $s=$ average penetration for the last six blows of the hammer in inches. Where a steam hammer is used, $\frac{1}{10}$ is to be used in place of unity in the denominator of the right hand member of the formula.

Piles shall have a penetration of not less than io ft . in hard material, such as gravel, and not less than 15 ft . in loam or soft material.

## Proportion of Parts.

32. Allowable Stresses.-In proportioning the different parts of the structure the maximum stresses due to the combinations of the dead and wind load; dead and snow load; or dead, minimum snow and wind load are to be provided for. Concentrated loads where they occur must be provided for.

## 33. Tensile Stress.-Allowable Unit Tensile Stresses for Struc-

 tural Steel. For direct dead, snow and wind loads.Lbs. per Sq. In.
Shapes, main members, net section .................. . 16,000
Bars
16,000
Bottom flanges of rolled beams ...................... . 16,000
Shapes, laterals, net section
20,000
Iron rods for laterals ................................ . . 20,000
Plate girder webs, shear on net section ............. 10,000
Shapes liable to sudden loading as when used for crane girders

10,000
Expansion rollers per lineal inch ................... $600 \times D$ where $D=$ diameter of roller in inches.

Laterals shall be designed for the maximum stresses due to 5,000 pounds initial tension and the maximum stress due to wind.
34. Compressive Stress.-Allowable Unit Compressive Stress for Structural Steel. For direct dead, snow and wind loads

$$
S=16,000-70 \frac{l}{r}
$$

where $S=$ allowable unit stress in pounds per sq. in.;
$l=$ length of member in inches c . to c . of end connections;
$r=$ least radius of gyration of the member in inches.
35. Plate Girders.-Top flanges of plate girders shall have the same gross area as the tension flanges.
36. Shear in webs of plate girders shall not exceed 10,000 pounds per sq. in. of net section.
37. Alternate Stress.-Members and connections subject to alternate stresses shall be designed to take each kind of stress.
38. Combined Stress.-Members subject to combined direct and bending stresses shall be proportioned according to the following formula:

$$
S=\frac{P}{A}+\frac{M \cdot y_{1}}{I \pm \frac{P \cdot l^{2}}{10 E}}
$$

where $S=$ stress in lbs. per sq. in. in extreme fiber ;
$P=$ direct load in lbs.;
$A=$ area of member in sq. in.;
$M=$ bending moment in in.-lbs.;
$y_{1}=$ distance from neutral axis to extreme fiber in in.;
$I=$ moment of inertia of member;
$l=$ length member, or distance from point of zero moment to end of member in in.;
$E=$ modulus of elasticity $=30,000,000$.
When combined direct and flexural stress due to wind is considered, 50 per cent may be added to the above allowable tensile and compressive stresses.
39. Stress Due to Weight of Member.-Where the stress due to the weight of the member or due to an eccentric load exceeds the allowable stress for direct loads by more than io per cent, the section shall be increased until the total stress does not exceed the above allowable stress for direct loads by more than io per cent.

The eccentric stress caused by connecting angles by one leg when used as ties or struts shall be calculated, or only one leg will be considered effective.
40. Rivets.-Rivets shall be so spaced that the shearing stress shall not exceed ir,000 pounds per square inch; nor the pressure on the bearing surface (diameter $\times$ thickness of piece) of the rivet hole exceed 22,000 pounds per square inch.

Rivets in lateral connections may have stresses 25 per cent in excess of the above.

Field rivets shall be spaced for stresses two thirds those allowed for shop rivets.

Field bolts, when allowed, shall be spaced for stresses two thirds those allowed for field rivets.

Rivets and field bolts must not be used in direct tension. Where it is necessary that connections take tension turned bolts shall be used.
41. Pins.-Pins shall be proportioned so that the shearing stress shall not exceed ir,ooo pounds per square inch; nor the pressure on the bearing surface (diameter $\times$ thickness of piece) of the pin hole exceed 22,000 pounds per square inch; nor the extreme fiber stress due to cross bending exceed 24,000 pounds per square inch when the applied forces are assumed as acting at the center of the members.
42. Plate Girders.-Plate girders shall be proportioned on the assumption that $\frac{1}{8}$ of the gross area of the web is available as flange area, and the shear is resisted by the web. The distance between centers of gravity of the flange areas shall be considered as the effective depth of the girder.
43. Web Stiffeners.-The web of plate girders shall have stiffeners at the ends and inner edges of bearing plates, and at points of concentrated loads, and also at intermediate points where the thickness of the web is less than $1 / 60$ of the unsupported distance between flange angles, not further apart than the depth of the full web plate with a maximum limit of 5 feet. Stiffeners shall be designed as columns for a length equal to one half the depth of the girder. Stiffener angles must have enough rivets to properly transmit the shear.
44. Compression flanges of plate girders shall have at least the same sectional area as the tension flanges, and shall not have a stress per sq. in. on the gross area greater than $16,000-150 \frac{l}{b}$, where $l=u n-$ supported distance, and $b=$ width of flange. Compression flanges of plate girders shall be stayed transversely when their length is more than thirty times their width.
45. Rolled Beams.-Rolled beams shall be proportioned by their moment of inertia. The depth of rolled beams in floors shall not be less than $1 / 20$ of the span. Where rolled beams or channels are used as roof purlins the depths shall not be less than $1 / 40$ of the span.
46. Timber.-The allowable stresses in timber purlins and other timbers shall be taken from Table II.

TABLE $I I$.
Allowable Working Unit Stresses, in Pounds, per Square Inch.

| Kind of Timber. |  | End <br> Bearing. | Columns Under 10 Diameters, $C$ | Bearing <br> Across Fiber. | Shear. |  | Modulus of Elasticity, E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Parallel to Grain. | Longitudinal Shear in Beams. |  |
| White Oak | 1,200 | 1,200 | 1,000 | 450 | 200 | 110 | 1,150,000 |
| Long Leaf Yellow Pine... | 1,300 | 1,300 | 1,000 | 300 | 180 | 120 | 1,610,000 |
| White Pine and Spruce.... | 1,000 | 1,000 | 800 | 200 | 100 | 70 | I, 130,000 |
| Western Hemlock. ......... | 1,000 | 1,000 | 800 | 200 | 160 | 100 | 1,480,000 |
| Douglass Fir .. .............. | I, 200 | 1,200 | 1,000 | 350 | 180 | 110 | 1,510,000 |

Columns may be used with a length not exceeding 45 times the least dimension. The unit stress for lengths of more than 10 times the least dimension shall be reduced by the following formula:

$$
P=C-\frac{C}{100} \frac{l}{d}
$$

where $C=$ unit stress, as given above for short columns;
$P=$ allowable unit stress in lbs. per sq. in.;
$l=$ length of column in in.;
$d=$ least side of column in in.

## Covering.

47. Corrugated Steel.-Corrugated steel shall generally have $2 \frac{1}{2}$ inch corrugations when used for roof and sides of buildings, and $1 \frac{1}{4}$ inch corrugations when used for lining buildings. The minimurn gage of corrugated steel shall be No. 22 for roofs, No. 24 for sides, and No. 26 for lining.

The gage of corrugated steel in U. S. standard gage and weight per square foot shall be shown on the general plan.
48. Spacing Purlins and Girts.-The span, or center to center distance of purlins, shall not exceed the distance given in Fig. 3 for a safe load of 30 lbs . per sq. ft. Corrugated steel sheets shall preferably span two purlin spaces. Girts shall be spaced for a safe load of 25 lbs. per sq. ft. in Fig. 3.
49. End and Side Laps.-Corrugated steel shall be laid with two corrugations side lap and six inches end lap when used for roofing, and one corrugation side lap and four inches end lap when used for siding.


Fig. 3. Safe Uniform Load in Pounds for Corrugated Steel for Differens Spans in Feet.
50. Fastening.-Corrugated steel shall be fastened to the purlins and girts by means of galvanized iron straps $\frac{3}{4}$ inch wide by No. 18 gage, spaced 8 to 12 inches apart; by clinch nails spaced 8 to 12 inches apart; or by nailing directly to spiking strips with 8 d barbed nails, spaced 8 inches apart. Spiking strips shall preferably be used with anti-condensation lining. Bolts, nails and rivets shall always pass through the top of corrugations. Side laps shall be riveted with copper or galvanized iron rivets 8 to 12 inches apart on the roof and $\mathrm{I} \frac{1}{2}$ to 2 feet apart on the sides.
51. Corrugated Steel Lining.-Corrugated steel lining on the sides shall be laid with one corrugation side lap and four inches end lap. Girts for corrugated steel lining shall be spaced for a safe load of 25 pounds per square foot as given in Fig. 3.
52. Anti-condensation Lining.-Anti-condensation roof lining shall be used to prevent dripping in engine houses and similar buildings, and shall be constructed as follows: Galvanized wire poultry netting is fastened to one eave purlin and is passed over the ridge, stretched tight and fastened to the other eave purlin. The edges of the wire are woven together and the netting is fastened to the spiking strips, where used, by means of small staples. On the netting are laid two layers of asbestos paper $\frac{1}{16} \mathrm{in}$. thick and two layers of tar paper. The corru-
gated steel is then fastened to the purlins in the usual way; $\frac{3}{16} \mathrm{in}$. stove bolts with $\mathrm{I}^{\prime \prime} \times \frac{1^{\prime \prime}}{8} \times 4^{\prime \prime}$ plate washers on the lower side are used for fastening the side laps together and for supporting the lining; or the purlins may be spaced one half the usual distance where anticondensation lining is used and the stove bolts omitted.
53. Flashing.-Valleys or corners around stacks shall have flashing extending at least 12 inches above where water will stand, and shall be riveted or soldered, if necessary, to prevent leakage.

Flashing shall be provided above doors and windows.
54. Ridge Roll.-All ridges shall have a ridge roll securely fastened to the corrugated steel.
55. Corner Finish.-All corners shall be covered with standard corner finish securely fastened to the corrugated steel.
56. Cornice.-At the gable ends the corrugated steel on the roof shall be securely fastened to a finish angle or channel connected to the end of the purlins, or, where molded cornices are used, to a piece of timber fastened to the ends of the purlins.
57. Gutters.-Gutters and conductors shall be furnished at least equal to the requirements of the following table:

| Span of Roof. |  | Gutter. |
| :--- | :--- | :--- | | Conductor. |
| :---: |
| $U_{p}$ to 50 ft. |

Gutters shall have a slope of at least I in. in 15 ft . Gutters and conductors shall be matde of galvanized steel not lighter than No. 24.
58. Ventilators.-Ventilators shall be provided and located so as to properly ventilate the building. They shall have a net opening for each ioo square feet of floor space as follows: not less than one fourth square foot for clean machine shops and similar buildings; not less than one square foot for dirty machine shops; not less than four square feet for mills; and not less than six square feet for forge shops, foundries and smelters.
59. Shutters and Louvres.-Openings in ventilators shall be provided with shutters, sash, or louvres, or may be left open as specified.

Shutters must be provided with a satisfactory device for opening and closing.

Louvres must be designed to prevent the blowing in of rain and snow, and must be made stiff so that no appreciable sagging will occur. They shall be made of not less than No. 20 gage galvanized steel for flat louvres, and No. 24 gage galvanized steel for corrugated louvres.
60. Circular Ventilators.-Circular ventilators, when used, must be designed so as to prevent down drafts. Net opening only shall be used in calculations.
61. Windows.-Windows shall be provided in the exterior walls equal to not less than io per cent of the entire exterior surface in mill buildings, and of not less than 25 per cent in machine shops, factories, washeries, concentrators, breakers and similar buildings.

Window glass up to $12 \mathrm{in} . \times 14 \mathrm{in}$. may be single strength, over I2 in. $\times$ I4 in. the glass shall be double strength. Window glass shall be A grade except in smelters, foundries, forge shops and similar structures, where it may be B grade. The sash and frames shall be constructed of white pine. Where buildings are exposed to fire hazard the windows shall have wire glass set in metal sash and frames.
62. Skylights.-At least half of the lighting shall preferably be by means of skylights, or sash in the sides of ventilators.

Skylights shall be glazed with wire glass, or wire netting shall be stretched beneath the skylights to prevent the broken glass from falling into the building. Where there is danger of the skylight glass being broken by objects falling on it, a wire netting guard shall be provided on the outside.

Skylight glass shall be carefully set, special care being used to prevent leakage. Leakage and condensation on the inner surface of the glass shall be carried to the down-spouts, or outside the building by condensation gutters.
63. Windows in sides of buildings shall be made with counterbalanced sash, and in ventilators shall be made with sliding or swing sash. All swinging windows shall be provided with a satisfactory operating device.
64. Doors.-Doors are to be furnished as specified and are to be provided with hinges, tracks, locks and bolts. Single doors up to 4 feet and double doors up to 8 feet shall preferably be sंwung on hinges; large doors, double and single, shall be arranged to slide on overhead tracks, or may be counterbalanced to lift up between vertical guides.

Steel doors shall be firmly braced and shall be covered with No. 24 corrugated steel with $\mathrm{I}_{\frac{1}{4}} \mathrm{in}$. corrugations.

The frames of sandwich doors shall be made of two layers of $\frac{7}{8} \mathrm{in}$. matched white pine, placed diagonally, and firmly nailed with clinch nails. The frame shall be covered on each side with a layer of No. 26 corrugated steel with $1 \frac{1}{4} \mathrm{in}$. corrugations. Locks and all other necessary hardware shall be furnished for all windows and doors.
65. TAR AND GRAVEL ROOF.-Tar and gravel roofs are called three-, four-, five-ply, etc., depending upon the number of layers of roofing felt. Tar and gravel roofs may be laid upon timber sheathing or upon concrete slabs.
66. Specifications for Five-Ply Tar and Gravel Roof on Board Sheathing.-The materials used in making the roof are I (one) thickness of sheathing paper or unsaturated felt, 5 (five) thicknesses of saturated felt weighing not less than 15 (fifteen) pounds per square of one hundred (100) square feet, single thickness, and not less than one hundred and twenty ( 120 ) pounds of pitch, and not less than four hundred (400) pounds of gravel or three hundred (300) pounds of slag from $\frac{1}{4}$ to $\frac{5}{8}$ in. in size, free from dirt, per square of one huadred (100) square feet of completed roof.
67. The material shall be applied as follows: First, lay the sheathing or unsaturated felt, lapping each sheet one inch over the preceding one. Second, lay two (2) thicknesses of tarred felt, lapping each sheet seventeen (17) inches over the preceding one, nailing as often as may be necessary to hold the sheets in place until the remaining felt is applied. Third, coat the entire surface of this two-ply layer with hot pitch, mopped on uniformly. Fourth, apply three (3) thicknesses of felt, lapping each sheet twenty-two (22) inches over the preceding one, mopping with hot pitch the full width of the 22 inches between the plies, so that in no case shall felt touch felt. Such nailing as is necessary shall be done so that all nails will be covered by not less than two plies of felt; fifth, spread over the entire surface of the roof a uniform coating of pitch, into which, while hot, imbed the gravel or slag. The gravel or slag in all cases must be dry.
68. Specifications for Five-Ply Tar and Gravel Roof on Concrete Sheathing.-The materials used shall be the same as for tar and gravel roof on timber sheathing, except that the one thickness of sheathing paper or unsaturated felt may be omitted.
69. The materials shall be applied as follows: First, coat the concrete with hot pitch, mopped on uniformly. Second, lay two (2) thick-
nesses of tarred felt, lapping each sheet seventeen (17) inches over the preceding one, and mop with hot pitch the full width of the 17 inch lap, so that in no case shall felt touch felt. Third, coat the entire surface wíth hot pitch, mopped on uniformly. Fourth, lay three (3) thicknesses of felt, lapping each sheet twenty-two (22) inches over the preceding one, mopping with hot pitch the full width of the 22 inch lap between the plies, so that in no case shall felt touch felt. Fifth, spread the entire surface of the roof with a uniform coat of pitch, into which, while hot, imbed gravel or slag.


#### Abstract

70. SPECIFICATIONS FOR CEMENT FLOOR ON A CONCRETE BASE. Materials.-The cement used shall be first-class Portland cement, and shall pass the standards of the American Society for Testing Materials. The sand for the top finish shall be clean and sharp and shall be retained on a No. 30 sieve and shall have passed the No. 20 sieve. Broken stone for the top finish shall pass a $\frac{1}{2}$ in. screen and shall be retained on the No. 20 screen. Dust shall be excluded. The sand for the base shall be clean and sharp. The aggregate for the base shall be of broken stone or gravel and shall pass a 2 in . ring.


71. Base.-On a thoroughly tamped and compacted subgrade the concrete for the base shall be laid and thoroughly tamped. The base shall not be less than $2 \frac{1}{2}$ in. thick. Concrete for the base shall be thoroughly mixed with sufficient water so that some tamping is required to bring the moisture to the surface. If old concrete is used for the base the surface shall be roughened and thoroughly cleaned so that the new mortar will adhere. The roughened surface of old concrete shall then be thoroughly wet so that the base will not draw water from the finish when the latter is applied. Before scrubbing the base with grout the excess water shall be removed.
72. Finish.-With old concrete the surface of the base shall first be scrubbed with a thin grout of pure cement, rubbed in with a broom. On top of this, before the thin coat is set, a coat of finish mixed in the proportions of one part Portland cement, one part stone broken to pass a $\frac{1}{2}$ in. ring, and one part sand shall be troweled on using as much pressure as possible, so that it will take a firm bond. After the finish has been applied to the desired thickness it should be screeded and floated to a true surface. Between the time of initial and final set it shall be finished by skilled workmen with steel trowels and shall be worked to final surface. Under no condition shall a dryer be used, nor shall water be added to make the material work easily.
73. SPECIFICATIONS FOR WOOD FLOOR ON A TAR CONCRETE BASE. Floor Sleepers.-Sleepers for carrying the timber floor shall be $3 \mathrm{in} . \times 3$ in. placed 18 in . c. to c. After the subgrade has been thoroughly tamped and rolled to an elevation of $4 \frac{1}{2} \mathrm{in}$. below the tops of the sleepers, the sleepers shall be placed in position and supported on stakes driven in the subgrade. Before depositing the tar concrete the sleepers must be brought to a true level.
74. Tar Concrete Base.-The tar concrete base shall be not less than $4 \frac{1}{2}$ in. thick and shall be laid as follows: First, a layer three (3) inches thick of coarse, screened gravel thoroughly mixed with tar, and tamped to a hard level surface. Second, on this bed spread a top dressing $\mathrm{I} \frac{1}{2}$ inches thick of sand heated and thoroughly mixed with coal tar pitch, in the proportions of one (I) part pitch to three (3) parts tar. The gravel, sand and tar shall be heated to from 200 to 300 degrees $F$., and shall be thoroughly mixed and carefully tamped into place.
75. Plank Sub-Floor.-The floor plank shall be of sound hemlock or pine not less than 2 inches thick, planed on one side and one edge to an even thickness and width. The floor plank is to be toe-nailed with 4 in. wire nails.
76. Finished Flooring.-The finished flooring is to be of maple of clear stock, $\frac{7}{8}$ in. finished thickness, thoroughly air and kiln dried and not over 4 inches wide. The floor is to be planed to an even thickness, the edges jointed, and the underside channeled or ploughed. The finished floor is to be laid at right angles to the sub-floor, and each board neatly fitted at the ends, breaking joints at random. The floor is to be final nailed with 10 d . or 3 in . wire nails, nailed in diagonal rows 16 inches apart across the boards, with two (2) nails in each row in every board. The floor to be finished off perfectly smooth on completion.
77. The finished flooring is not to be taken into the building or laid until the tar concrete base and sub-plank floor are thoroughly dried.

## Details of Construction.

78. Details. - All connections and details shall be of sufficient strength to develop the full strength of the member.
79. Pitch of Rivets.-The pitch of rivets shall not exceed 6 inches, or sixteen times the thickness of the thinnest outside plate in the line
of stress, nor forty times the thickness of the thinnest outside plate at right angles to the line of stress. The pitch shall never be less than three diameters of rivet. At the ends of compression members the pitch shall not exceed four diameters of the rivet for a length equal to twice the width of the member.
80. Edge Distance.-The minimum distance from the center of any rivet hole to a sheared edge shall be $\mathrm{I} \frac{1}{2} \mathrm{in}$. for $\frac{7}{8} \mathrm{in}$. rivets, $\mathrm{I} \frac{1}{4} \mathrm{in}$. for $\frac{3}{4} \mathrm{in}$. rivets, $\mathrm{I} \frac{1}{8} \mathrm{in}$. for $\frac{5}{8} \mathrm{in}$. rivets, and I in . for $\frac{1}{2} \mathrm{in}$. rivets, and to a rolled edge $\mathrm{I} \frac{1}{4}, \mathrm{I} \frac{1}{8}, \mathrm{I}$ and $\frac{7}{8}$ in., respectively. The maximum distance from the edge shall be eight (8) times the thickness of the plate.
81. Maximum Diameter.-The diameter of the rivets in angles carrying calculated stresses shall not exceed $\frac{1}{4}$ of the width of the leg in which they are driven, except that $\frac{5}{8}$ in. rivets may be used in 2 in . angles.
82. Diameter of Punch and Die.-The diameter of the punch and die shall be as specified in § 147 .
83. Net Sections.-The effective diameter of a driven rivet will be assumed the same as its diameter before driving. In deducting the rivet holes to obtain net sections in tension members, the diameter of the rivet holes will be assumed as $\frac{1}{8}$ inch larger than the undriven rivet.
84. Minimum Sections.-No metal of less thickness than $\frac{1}{4}$ in. shall be used except for fillers; and no angles less than $2^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$. The minimum thickness of metal in head frames, rock houses and coal tipples, coal washers and coal breakers shall be $\frac{5}{16}$ inch, except for fillers. No upset rod shall be less than $\frac{5}{8}$ in. in diameter. Sag rods may be as small as $\frac{3}{8}$ in. diameter.
85. Connections.-All connections shall be of sufficient strength to develop the full strength of the member. No connections except for lacing bars shall have less than two rivets. All field connections except lacing bars shall have not less than three rivets.
86. Flange Plates.-The flange plates of all girders shall not extend beyond the outer line of rivets connecting them to the angles more than six inches nor more than eight times the thickness of the thinnest plate.
87. Web Stiffeners.-Web stiffeners shall be in pairs, and shall have a close fit against flange angles. The stiffeners at the ends of plate girders shall have filler plates. Intermediate stiffeners may have fillers or be crimped over the flange angles. The rivet pitch in stiffeners shall not be greater than 5 inches.
88. Web Splices.-Web plates shall be spliced at all points by a plate on each side of the web, capable of transmitting the shearing and bending stresses through the splice rivets.
89. Net Sections.-Net sections must be used in calculating tension members and in deducting the rivet holes they shall be taken $\frac{1}{8} \mathrm{in}$. larger than the nominal size of rivet.

90 . Pin connected riveted tension members shall have a net section through the pin hole 25 per cent in access of the required net section of the member. The net section back of the pin hole in line of the center of the pin shall be at least 0.75 of the net section through the pin hole.
91. Upset Rods.-All rods with screw ends, except sag rods, must be upset at the ends so that the diameter at the base of the threads shall be $\frac{1}{16}$ inch larger than any part of the body of the bar.
92. Upper Chords.-Upper chords of trusses shall have symmetrical cross-sections, and shall preferably consist of two angles back to back.
93. Compression Members.-All other compression members for roof trusses, except sub-struts, shall be composed of sections symmetrically placed. Sub-struts may consist of a single section.
94. Columns.-Side posts which take flexure shall preferably be composed of 4 angles laced, or 4 angles and a plate. Where side posts do not take flexure and carry heavy loads they shall preferably be composed of two channels laced, or of two channels with a center diaphragm.
95. Posts in end framing shall preferably be composed of I-beams or 4 angles laced. Corner columns shall preferably be composed of one angle.
96. Crane Posts.-The cross-bending stress due to eccentric loading in columns carrying cranes shall be calculated. Crane girders carrying heavy cranes shall be carried on independent columns.
97. Batten Plates.-Laced compression members shall be stayed at the ends by batten plates, placed as near the end of the member as practicable and having a length not less than the greatest width of the member. The thickness of batten plates shall not be less than $1 / 40$ of the distance between rivet lines at right angles to axis of member.
98. Lacing.-Single lacing bars shall have a thickness of not less than $1 / 40$, and double bars connected by a rivet at the intersection of not less than $1 / 60$ of the distance between the rivets connecting them to
the member; they shall make an angle not less than 45 degrees with the axis of the member; their width shall be in accordance with the following standards, generally:

Size of Member. Width of Lacing Bars.
For 15 inch channels, or built sections with
$3 \frac{1}{2}$ and 4 inch angles. $\} 2 \frac{1}{2}$ inches ( $\frac{7}{8}$ inch rivets).
For 12, 10, 9 inch channels, or built sections? with 3 inch angles.
$\} 2 \frac{1}{4}$ inches ( $\frac{3}{4}$ inch rivets).
$\left.\begin{array}{l}\text { For } 8 \text { and } 7 \text { inch channels, or built sections } \\ \text { with } 2 \frac{2}{2} \text { inch angles. }\end{array}\right\} 2$ inches ( $\frac{5}{8}$ inch rivets).
For 6 and 5 inch channels, or built sections
with 2 inch angles.
${ }^{13}$ inches ( $\frac{1}{2}$ inch rivets).
Where laced members are subjected to bending, the size of lacing bars or angles shall be calculated, or a solid web plate shall be used.
99. Pin Plates.-All pin holes shall be reinforced by additional material when necessary, so as not to exceed the allowable pressure on the pins. These reinforcing plates must contain enough rivets to transfer the proportion of pressure which comes upon them, and at least one plate on each side shall extend not less than 6 inches beyond the edge of the batten plate.
100. Maximum Length of Compression Members.-No compression member shall have a length exceeding 125 times its least radius of gyration for main members, nor 150 times its least radius of gyration for laterals and sub-members. The length of a main tension member in which the stress is reversed by the wind shall not exceed 150 times its least radius of gyration.
ior. Maximum Length of Tension Members.-The length of riveted tension members in horizontal or inclined position shall not exceed 200 times their radius of gyration except for wind bracing, which members may have a length equal to 250 times the least radius of gyration. The horizontal projection of the unsupported portion of the member is to be considered the effective length.
102. Splices.-In compression members joints with abutting faces planed shall be placed as near the panel points as possible, and must be spliced on all sides with at least two rows of rivets on each side of the joint. Joints with abutting faces not planed must be fully spliced.
103. Splices.-Joints in tension members shall be fully spliced.
104. Tension Members.-Tension members shall preferably be composed of angles or shapes capable of taking compression as well as tension. Flats riveted at the ends shall not be used.
105. Main tension members shall preferably be made of 2 angles, 2 angles and a plate, or 2 channels laced. Secondary tension members may be made of a single shape.

Io6. Eye-Bars.-Heads of eye-bars shall be so proportioned as to develop the full strength of the bar. The heads shall be forged and not welded.
107. Pins.-Pins must be turned true to size and straight, and must be driven to place by means of pilot nuts.

The diameter of pin shall not be less than $\frac{3}{4}$ of the depth of the widest bar attached to it.

The several members attached to a pin shall be packed so as to produce the least bending moment on the pin, and all vacant spaces must be filled with steel or cast iron fillers.
io8. Bars or Rods.-Long laterals may be made of bars with clevis or sleeve nut adjustment. Bent loops shall not be used.

IO9. Spacing Trusses.-Trusses shall preferably be spaced so as to allow the use of single pieces of rolled sections for purlins. Trussed purlins shall be avoided if possible.
ino. Purlins and Girts.-Purlins and girts shall preferably be composed of single sections-channels, angles or Z-bars, placed with web at right angles to the trusses and posts and legs turned down.
iII. Fastening.-Purlins and girts shall be attached to the top chord of trusses and to columns by means of angle clips with two rivets in each leg.
112. Spacing.-Purlins for corrugated steel without sheathing shall be spaced at distances apart not to exceed the span as given for a safe load of 30 pounds, and girts for a safe load of 25 pounds as given in Fig. 3.

II3. Timber Purlins.-Timber purlins and girts shall be attached and spaced the same as steel purlins.

II4. Base Plates.-Base plates shall never be less than $\frac{1}{2}$ inch in thickness, and shall be of sufficient thickness and size so that the pressure on the masonry shall not exceed the allowable pressures in §30.
115. Anchors.-Columns shall be anchored to the foundations by means of two anchor bolts not less than I in. in diameter upset, placed as wide apart as practicable in the plane of the wind. The anchorage shall be calculated to resist one and one half times the bending moment at the base of the columns.
i16. Lateral Bracing.-Lateral bracing shall be provided in the plane of the top and bottom chords, sides and ends; knee braces in the transverse bents; and sway bracing wherever necessary. Lateral bracing shall be designed for an initial stress of 5,000 pounds in each member, and provision must be made for putting this initial stress into the members in erecting.

II7. Temperature.-Variations in temperature to the extent of 150 degrees $F$. shall be provided for.

## MATERIAL AND WORKMANSHIP.

## Material.

118. Process of Manufacture.-Steel shall be made by the openhearth process.

II9. Schedule of Requirements.

| Chemical and Physical Properties. | Structural Steel. | Rivct Steel. | Steel Castings. |
| :---: | :---: | :---: | :---: |
| Phosphorus Max.. $\left\{\begin{array}{l}\text { Basic ... } \\ \text { Acid.... }\end{array}\right.$ | 0.04 per cent. <br> 0.08 | $0.0+$ per cent. 0.04 | 0.05 per cent. 0.08 |
| Sulphur maximum..... | 0.05 " | 0 04 " | 0.05 |
| Ultimate tensile strength.. Pounds per square inch...... <br> Elongation: min. \% in $8^{\prime \prime}\{$ <br> Elongation: min. \% in $2^{\prime \prime}$... Character of fracture......... Cold bends without fracture. | $\begin{gathered} \text { Desired } \\ 60,000 \\ \mathbf{1 , 5 0 0 , 0 0 0} * \end{gathered}$ | Desired <br> 50,0c0 <br> 1,500,000 | Not less than 65,000 |
|  | Ult. tensile strength 22 Silky $180^{\circ}$ flat $\dagger$ | Ult. tensile strength. |  |
|  |  | $\begin{gathered} \text { Silky } \\ \text { 180 flat } \ddagger \end{gathered}$ | Silky or fine granular $90^{\circ}, d=3 t$ |

The yield point, as indicated by the drop of beam, shall be recorded in the test reports.
120. Allowable Variations.-If the ultimate strength varies more than $4,000 \mathrm{lbs}$. from that desired, a retest shall be made on the same

[^27]gage, which, to be acceptable, shall be within $5,000 \mathrm{lbs}$. of the desired ultimate.
121. Chemical Analyses.-Chemical determinations of the percentages of carbon, phosphorus, sulphur and manganese shall be made by the manufacturer from a test ingot taken at the time of the pouring of each melt of steel and a correct copy of such analysis shall be furnished to the engineer or his inspector. Check analyses shall be made from finished material, if called for by the purchaser, in which case an excess of 25 per cent above the required limits will be allowed.
122. Form of Specimens. Plates, Shapes and Bars.-Specimens for tensile and bending tests for plates, shapes and bars shall be made by cutting coupons from the finished product, which shall have both faces rolled and both edges milled to the form shown by Fig. I; or with both edges parallel ; or they may be turned to a diameter of $\frac{3}{4}$ inch for a length of at least 9 inches, with enlarged ends.
123. Rivets.-Rivet rods shall be tested as rolled.
124. Pins and Rollers.-Specimens shall be cut from the finished rolled or forged bar, in such manner that the center of the specimen shall be I inch from the surface of the bar. The specimen for tensile test shall be turned to the form shown by Fig. 2. The specimen for bending test shall be I inch by $\frac{1}{2}$ inch in section.


Fig. I

125. Steel Castings.-The number of tests will depend on the character and importance of the castings. Specimens shall be cut cold from coupons molded and cast on some portion of one or more castings from each melt or from the sink heads, if the heads are of sufficient
size. The coupon or sink head, so used, shall be annealed with the casting before it is cut off. Test specimens shall be of the form prescribed for pins and rollers.
126. Annealed Specimens.-Material which is to be used without annealing or further treatment shall be tested in the condition in which it comes from the rolls. When material is to be annealed or otherwise treated before use, the specimens for tensile tests representing such material shall be cut from properly annealed or similarly treated short lengths of the full section of the bar.
127. Number of Tests.-At least one tensile and one bending test shall be made from each melt of steel as rolled. In case steel differing $\frac{3}{8} \mathrm{in}$. and more in thickness is rolled from one melt, a test shall be made from the thickest and thinnest material rolled.
128. Modifications in Elongation.-For material less than $\frac{5}{16} \mathrm{in}$. and more than $\frac{3}{4} \mathrm{in}$. in thickness the following modifications will be allowed in the requirements for elongation:
(a) For each $\frac{1}{16}$ in. in thickness below $\frac{5}{16}$ in., a deduction of $2 \frac{1}{2}$ per cent will be allowed from the specified elongation.
(b) For each $\frac{1}{8}$ in. in thickness above $\frac{3}{4}$ in., a deduction of I per cent will be allowed from the specified elongation.
(c) For pins and rollers over 3 in. in diameter the elongation in 8 in . may be 5 per cent less than that specified in paragraph 119.
129. Bending Tests.-Bending tests may be made by pressure or by blows. Plates, shapes and bars less than I in. thick shall bend as called for in paragraph 119.
130. Thick Material.-Full-sized material for eye-bars and other steel I in. thick and over, tested as rolled, shall bend cold 180 degrees around a pin the diameter of which is equal to twice the thickness of the bar, without fracture on the outside of bend.
131. Bending Angles.-Angles $\frac{3}{4}$ in. and less in thickness shall open flat and angles $\frac{1}{2} \mathrm{in}$. and less in thickness shall bend shut, cold, under blows of a hammer, without sign of fracture. This test will be made only when required by the inspector.
132. Nicked Bends.-Rivet steel, when nicked and bent around a bar of the same diameter as the rivet rod, shall give a gradual break and a fine, silky, uniform fracture.
133. Finish,-Finished material shall be free from injurious seams, flaws, cracks, defective edges, or other defects, and have a smooth,
uniform, workmanlike finish. Plates 36 in. in width and under shall have rolled edges.
134. Stamping.-Every finished piece of steel shall have the melt number and the name of the manufacturer stamped or rolled upon it. Steel for pins and rollers shall be stamped on the end. Rivet and lattice steel and other small parts may be bundled with the above marks on an attached metal tag.
135. Defective Material.-Material which, subsequent to the above tests at the mills, and its acceptance there, develops weak spots, brittleness, cracks or other imperfections, or is found to have injurious defects, will be rejected at the shop and shall be replaced by the manufacturer at his own cost.
136. Allowable Variation in Weight.-A variation in cross-section or weight of each piece of steel of more than $2 \frac{1}{2}$ per cent from that specified will be sufficient cause for rejection, except in case of sheared plates, which will be covered by the following permissible variations, which are to apply to single plates.
137. When Ordered to Weight.-Plates $12 \frac{1}{2}$ pounds per square foot or heavier:
(a) Up to 100 in . wide, $2 \frac{1}{2}$ per cent above or below the prescribed weight.

Plates I/4 Inch and Over in Thickness.

| Thickness Ordered. | Nominal Weight. | Width of Plate. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Up to 75 Inch. | ${ }^{75 \prime}{ }^{\prime \prime}$ and up to | $100^{\prime \prime}$ and up to $115 .{ }^{\prime \prime}$ | Over 115.1 |
| 1-4 inch. | 10.20 lbs . | Io per cent. | 14 per cent. | IS per cent. |  |
| 5-16 ${ }^{6}$ | 12.75 " | 8 " 6 |  |  |  |
| 3-8 6 | 15.306 | 7 " | 10 6 6 | 13 "6 6 | 17 per cent. |
| 7-16 ${ }^{6}$ | 17.85 " | 6 66 6 | 8 " 6 | 10 6 ، | 13 "6 6 |
| 1-2 ، | 20.40 " | 5 " ${ }^{6}$ | 7 " | 9 " ${ }^{6}$ | 12 "6 |
| 9-16 ، | 22.95 " | $41 / 2$ "6 | 61/2"6 ${ }^{16}$ | $81 / 2$ " 6 | II "6 " |
| 5-8 ، | 25.50 | 4 " 6 | $6^{\prime \prime}$ "6 | 8 6 6 | 10 " " |
| Over 5-8 ، |  | 3 $1 / 2{ }^{\prime 6}$ 6 | 5 " " | 61/2" " | 9 '6 |

Plates Under $1 / 4$ Inch in Thickness.

| Thickness Ordered. | Nominal Weights L.js. per Square Ft. | Width of Plate. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Ǔ? to 50." | $5^{5 \prime \prime}{ }_{70}{ }^{\text {and }}$ "up to | Over 70." |
| I-8 " up to 5-32" | 5.10 to 6.37 | Io per cent. | 15 per cent. | 20 per cent. |
| 5-32 " " $3-16$ | 6.37 " 7.65 | $81 / 2$ "6 | $121 / 2$ " " | 17 "6 |
|  | 7.65 " 10.20 | 7 * 6 | 10 " 6 | 15 " 6 |

(b) One hundred in. wide and over, 5 per cent above or below 138. Plates under $12 \frac{1}{2}$ pounds per square foot:
(a) Up to 75 in. wide, $2 \frac{1}{2}$ per cent above or below.
(b) Seventy-five in. and up to 100 in . wide, 5 per cent above or 3 per cent below.
(c) One hundred in. wide and over, io per cent above or 3 per cent below.
139. When Ordered to Gage.-Plates will be accepted if they measure not more than .or inch below the ordered thickness.
140. An excess over the nominal weight, corresponding to the dimensions on the order, will be allowed for each plate, if not more than that shown in the preceding tables, one cubic inch of rolled steel being assumed to weigh 0.2833 pounds.

## Special Metals.

141. Cast-Iron.-Except where chilled iron is specified, castings shall be made of tough gray iron, with sulphur not over o.io per cent. They shall be true to pattern, out of wind and free from flaws and excessive shrinkage. If tests are demanded they shall be made on the "Arbitration Bar" of the American Society for Testing Materials, which is a round bar, $1 \frac{1}{4} \mathrm{in}$. in diameter and 15 in . long. The transverse test shall be on a supported length of 12 in . with load at middle. The minimum breaking load so applied shall be $2,900 \mathrm{lbs}$., with a deflection of at least $\frac{1}{16}$ inch before rupture.
142. Wrought-Iron Bars.-Wrought-iron shall be double-rolled, tough, fibrous and uniform in character. It shall be thoroughly welded in rolling and be free from surface defects. When tested in specimens of the form of Fig. I, or in full-sized pieces of the same length, it shall show an ultimate strength of at least $50,000 \mathrm{lbs}$. per sq. in., an elongation of at least 18 per cent in 8 in., with fracture wholly fibrous. Specimens shall bend cold, with the fiber through $135^{\circ}$, without sign of fracture, around a pin the diameter of which is not over twice the thickness of the piece tested. When nicked and bent the fracture shall show at least 90 per cent fibrous.

## Workmanship.

143. General.-All parts forming a structure shall be built in accordance with approved drawings. The workmanship and finish shall be equal to the best practice in modern bridge works.
144. Straightening Material.-Material shall be thoroughly straightened in the shop, by methods that will not injure it, before being laid off or worked in any way
145. Finish.-Shearing shall be neatly and accurately done and all portions of the work exposed to view neatly finished.
146. Rivets.-The size of rivets, called for on the plans, shall be understood to mean the actual size of the cold rivet before heating.
147. Rivet Holes.-When general reaming is not required, the diameter of the punch for material not over $\frac{3}{4}$ in. thick shall be not more than $\frac{1}{16}$ in., nor that of the die more than $\frac{1}{8}$ in. larger than the diameter of the rivet. The diameter of the die shall not exceed that of the punch by more than $\frac{1}{4}$ the thickness of the metal punched.

I48. Planing and Reaming.-In medium steel over $\frac{3}{4}$ of an in. thick, all sheared edges shall be planed and all holes shall be drilled or reamed to a diameter of $\frac{1}{8}$ of an in. larger than the punched holes, so as to remove all the sheared surface of the metal. Steel which does not satisfy the drifting test must have holes drilled.
149. Punching.-Punching shall be accurately done. Slight inaccuracy in the matching of holes may be corrected with reamers. Drifting to enlarge unfair holes will not be allowed. Poor matching of holes will be cause for rejection by the inspector.

I50. Assembling.-Riveted members shall have all parts well pinned up and firmly drawn together with bolts before riveting is commenced. Contact surfaces to be painted (see § 182).
151. Lacing Bars.-Lacing bars shall have neatly rounded ends, unless otherwise called for.
152. Web Stiffeners.-Stiffeners shall fit neatly between flanges of girders. Where tight fits are called for the ends of the stiffeners shall be faced and shall be brought to a true contact bearing with the flange angles.
${ }^{153}$. Splice Plates and Fillers.-Web splice plates and fillers under stiffeners shall be cut to fit within $\frac{1}{8}$ in. of flange angles.
154. Web Plates.-Web plates of girders, which have no cover plates, shall be flush with the backs of angles or be not more than $\frac{1}{4} \mathrm{in}$. scant, unless otherwise called for. When web plates are spliced, not more than $\frac{1}{4} \mathrm{in}$. clearance between ends of plates will be allowed.
${ }^{155}$. Connection Angles.-Connection angles for girders shall be flush with each other and correct as to position and length of girder.

In case milling is required after riveting, the removal of more than $\frac{1}{16}$ in. from their thickness will be cause for rejection.
156. Riveting.-Rivets shall be driven by pressure tools wherever possible. Pneumatic hammers shall be used in preference to hand driving.
157. Rivets shall look neat and finished, with heads of approved shape, full and of equal size. They shall be central on shank and grip the assembled pieces firmly. Recupping and calking will not be allowed. Loose, burned or otherwise defective rivets shall be cut out and replaced. In cutting out rivets great care shall be taken not to injure the adjacent metal. If necessary they shall be drilled out.
158. Turned Bolts.-Wherever bolts are used in place of rivets which transmit shear, the holes shall be reamed parallel and the bolts turned to a driving fit. A washer not less than $\frac{1}{4} \mathrm{in}$. thick shall be used under nut.
159. Members to be Straight.-The several pieces forming one built member shall be straight and fit closely together, and finished members shall be free from twists, bends or open joints.
160. Finish of Joints.-Abutting joints shall be cut or dressed true and straight and fitted close together, especially where open to view. In compression joints depending on contact bearing the surfaces shall be truly faced, so as to have even bearings after they are riveted up complete and when perfectly aligned.
161. Field Connections.-All holes for field rivets in splices in tension members carrying live loads shall be accurately drilled to an iron templet or feamed while the connecting parts are temporarily put together.
162. Eye-Bars.-Eye-bars shall be straight and true to size, and shall be free from twists, folds in the neck or head, or any other defect. Heads shall be made by upsetting, rolling or forging. Welding will not be allowed. The form of heads will be determined by the dies in use at the works where the eye-bars are made, if satisfactory to the engineer, but the manufacturer shall guarantee the bars to break in the body with a silky fracture, when tested to rupture. The thickness of head and neck shall not vary more than $\frac{1}{16} \mathrm{in}$. from the thickness of the bar.
163. Boring Eye-Bars.-Before boring, each eye-bar shall be properly annealed and carefully straightened. Pin holes shall be in the center line of bars and in the center of heads. Bars of the same length
shall be bored so accurately that, when placed together, pins $\frac{1}{32}$ in. smaller in diameter than the pin holes can be passed through the holes at both ends of the bars at the same time.
164. Pin Holes.-Pin holes shall be bored true to gage, smooth and straight; at right angles to the axis of the member and parallel to each other, unless otherwise called for. Wherever possible, the boring shall be done after the member is riveted up.
165. The distance center to center of pin holes shall be correct within $\frac{1}{32}$ in., and the diameter of the hole not more than $\frac{1}{50}$ in. larger than that of the pin, for pins up to 5 in . diameter, and $\frac{1}{32} \mathrm{in}$. for larger pins.
166. Pins and Rollers.-Pins and rollers shall be accurately turned to gage and shall be straight and smooth and entirely free from flaws.
167. Pilot Nuts.-At least one pilot and one driving nut shall be furnished for each size of pin for each structure, and field rivets 10 per cent in excess of the number of each size actually required.
168. Screw Threads.-Screw threads shall make tight fits in the nuts and shall be U. S. standard, except above the diameter of $1 \frac{3}{8} \mathrm{in}$., when they shall be made with six threads per in.
169. Annealing.-Steel, except in minor details, which has been partially heated shall be properly annealed.
17.0. Steel Castings.-All steel castings shall be annealed.

17I. Welds.-Welds in steel will not be allowed.
172. Bed Plates.-Expansion bed plates shall be planed true and smooth. Cast wall plates shall be planed top and bottom. The cut of the planing tool shall correspond with the direction of expansion.
173. Shipping Details.-Pins, nuts, bolts, rivets, and other small details shall be boxed or crated.
174. Weight.-The weight of every piece and box shall be marked on it in plain figures.
175. Finished Weight.-Payment for pound price contracts shall be by scale weight. No allowance over 2 per cent of the actual total weight of the structure as computed from the shop plans will be allowed for excess weight.

Additional Specifications When General Reaming and Planing are Required.
176. Planing Edges.-Sheared edges and ends shall be planed off at least $\frac{1}{4} \mathrm{in}$.
177. Reaming.-Punched holes shall be made with a punch $\frac{3}{16}$ in. smaller in diameter than the nominal size of the rivets and shall be reamed to a finished diameter of not more than $\frac{1}{16} \mathrm{in}$. larger than the rivet.
178. Reaming after Assembling.-Wherever practicable, reaming shall be done after the pieces forming one built member have been assembled and firmly bolted together. If necessary to take the pieces apart for shipping and handling, the respective pieces reamed together shall be so marked that they may be reassembled in the same position in the final setting up. No interchange of reamed parts will be allowed.
179. Removing Burrs.-The burrs on all reamed holes shall be removed by a tool countersinking about $\frac{1}{16}$ in.

## Timber.

180. Timber.-The timber shall be strictly first-class spruce, white pine, Douglas fir, Southern yellow pine, or white oak timber; sawed true and out of wind, full size, free from wind shakes, large or loose knots, decayed or sapwood, wormholes or other defects impairing its strength or durability.

## Painting.

181. Painting.-All steel work before leaving the shop shall be thoroughly cleaned from all loose scale and rust, and be given one good coating of pure boiled linseed oil or paint as specified, well worked into all joints and open spaces.
182. In riveted work, the surfaces coming in contact shall each be painted (with paint) before being riveted together.
183. Pieces and parts which are not accessible for painting after erection shall have two coats of paint.
184. The paint shall be a good quality of red lead or graphite pant, ground with pure linseed oil, or such paint as may be specified in the contract.
185. After the structure is erected the iron work shall be thoroughly and evenly painted with two additional coats of paint, mixed with pure
linseed oil, of such quality and color as may be selected. Painting shall be done only when the surface of the metal is perfectly dry. No painting shall be done in wet or freezing weather unless special precautions are taken. The two field coats of paint shall be of different colors.
186. Machine finished surfaces shall be coated with white lead and tallow before shipment or before being put out into the open air.

## Inspection and Testing at Mill and the Shops.

187. The manufacturer shall furnish all facilities for inspecting and testing weight and the quality of workmanship at the mill or shop where material is fabricated. He shall furnish a suitable testing machine for testing full-sized members if required.
188. Mill Orders.-The engineer shall be furnished with complete copies of mill orders, and no materials shall be ordered nor any work done before he has been notified as to where the orders have been placed so that he may arrange for the inspection.
189. Shop Plans.-The engineer shall be furnished with approved complete shop plans, and must be notified well in advance of the start of the work in the shop in order that he may have an inspector on hand to inspect the material and workmanship.
190. Shipping Invoices.-Complete copies of shipping invoices shall be furnished the engineer with each shipment.
191. The engineer's inspector shall have full access, at all times, to all parts of the mill or shop where material under his inspection is being fabricated.
192. The inspector shall stamp each piece accepted with a private mark. Any piece not so marked may be rejected at any time, and at any stage of the work. If the inspector, through an oversight or otherwise, has accepted material or work which is defective or contrary to the specifications, this material, no matter in what stage of completion, may be rejected by the engineer.
193. Full Size Tests.-Full size tests of any finished member shall be tested at the manufacturer's expense, and shall be paid for by the purchaser at the contract price less the scrap value, if the tests are satisfactory. If the tests are not satisfactory the material will not be paid for and the members represented by the tested member may be rejected.

## Erection.

194. Tools.- The contractor shall furnish at his own expense all necessary tools, staging and material of every description required for the erection of the work, and shall remove the same when the work is completed.
195. Risks.-The contractor shall assume all risks from storms or accidents, unless caused by the negligence of the owner, and all damage to adjoining property and to persons until the work is completed and accepted.
196. The contractor shall comply with all ordinances or regulations appertaining to the work.
197. The erection shall be carried forward with diligence and shall be completed promptly.

## APPENDIX II.

## Problems in Graphic Statics and the Calculation of Stresses.

Introduction.-It is impossible for the student to gain a working knowledge of graphic statics and the calculation of stresses without solving numerous problems. In order to save the time of the student and the instructor the problems must be selected with care, and the data put in working form. The following problems have been given by the author, in connection with a course preliminary to bridge analysis, and are presented here with the hope that they may prove of value to both students and instructors. By slightly changing the quantities and dimensions the data for new problems may be easily obtained.

Instructions.-(1) Plate.-The standard plate is to be $9^{\prime \prime} \times 101 / 2^{\prime \prime}$, with a $\mathrm{I}^{\prime \prime}$ border on the left-hand side, and a $1 / 2^{\prime \prime}$ border on the top, bottom, and right-hand side of the plate. The plate inside the border is to be $7^{1 / 2 \prime} \times 9^{1 / 2} 2^{\prime \prime}$. (2) Co-ordinates.-Unless stated to the contrary, co-ordinates given in the data will refer to the lower left-hand corner of border as the origin of co-ordinates. In defining the force, $P \frac{1500}{150^{\circ}}$ ( $5.0^{\prime \prime}, 3.0^{\prime \prime}$ ), the force is 1500 tbs ., makes $150^{\circ}$ with the X -axis (lies in the second quadrant), and passes through a point $5.0^{\prime \prime}$ to the right, and $3.0^{\prime \prime}$ above the lower left-hand corner of border. (3) Data.Complete data shall be placed on each problem so that the solution will be self explanatory. (4) Scales.-The scales of forces, and of frames or trusses shall be given as $\mathrm{I}^{\prime \prime}=(\quad)$ lbs., or ft .; and by a graphic scale as well. (5) Name.-The name of the student is be placed outside the bprder in the lower right-hand corner. (6) Equa-tions.-All equations shall be given, but details of the solution may be indicated. (7) References.-References are to "The Design of Steel Mill Buildings."

Note.-It should be noted that all the problems have been reduced so that all dimensions are one-half the original dimensions given in the statements of the problems.

## Problem i. Resultant of Concurrent Forces.

(a) Problem.-Given the following concurrent forces:
$P_{1} \frac{1900}{120^{\circ}} ; \quad P_{2} \frac{950}{30^{\circ}} ; \quad P_{3} \frac{1700}{315^{\circ}} ; \quad P_{4} \frac{750}{240^{\circ}} ; \quad P_{5} \frac{2200}{150^{\circ}}$.
Forces are given in pounds. Required to find the resultant, $R$, by means of a force diagram. Check by calculating $R$ by the algebraic method. Give all equations. Also construct check force polygon. Give amount and direction of the resultant. Scale for force polygon, $\mathrm{I}^{\prime \prime}=400 \mathrm{lbs}$.
(b) Methods.-Start $P_{1}$ at point $4^{\prime \prime}, 3^{1 / 2 \prime}(x, y$, using lower left-hand corner of the border as the origin of co-ordinates) and take the forces in the order, $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$. Draw check polygon starting at the same point and drawing the forces in the order $P_{2}, P_{4}, P_{5}, P_{3}, P_{1}$.
(c) Results.-The resultant is a force $R$ acting through the point of intersection of the given forces, and is parallel to the closing line in the force polygon. It will be seen that it is immaterial in what order the forces are taken in calculating the resultant, $R$. In the algebraic solution the summation of the horizontal components of the forces, including the resultant, $R$, are placed equal to zero, and the summation of the vertical components of the forces, including the resultant, $R$, are placed equal to zero. Solving these equations we have the value of $R$, and the angle $\theta$, which $R$ makes with the $X$-axis.

## Problem ia. Resultant of Concurrent Forces.

(a) Problem.-Given the following concurrent forces:
$P_{1} \frac{1800}{120^{\circ}} ; \quad P_{2} \frac{1000}{30^{\circ}} ; \quad P_{3} \frac{1700}{315^{\circ}} ; \quad P_{4} \frac{750}{240^{\circ}} ; \quad P_{5} \frac{2100}{150^{\circ}}$.
Forces are given in pounds. Required to find the resultant, $R$, by means of a force diagram. Check by calculating $R$ by the algebraic method. Give all equations. Also construct check force polygon. Give amount and direction of the resultant. Scale for force polygon, $\mathrm{I}^{\prime \prime}=400 \mathrm{lbs}$.


## Problem 2. Resultant of Non-concurrent Forces.

(a) Problem.-Given the following non-concurrent forces:

$$
\begin{gathered}
P_{1} \frac{720}{150^{\circ}}\left(7.0^{\prime \prime}, 6.3^{\prime \prime}\right), \quad P_{2} \frac{270}{0^{\circ}}\left(0.5^{\prime \prime}, 9 \cdot 3^{\prime \prime}\right), \quad P_{3} \frac{350}{205^{\circ}}\left(7.0^{\prime \prime}, 6.6^{\prime \prime}\right), \\
P_{4} \frac{210}{15^{\circ}}\left(0.8^{\prime \prime}, 8.5^{\prime \prime}\right)
\end{gathered}
$$

Forces are given in pounds. Find resultant, $R$, by means of force and equilibrium polygons. Check by calculating $R$ by means of a new force polygon and a new equilibrium polygon. Also check as described below. Scale for force polygon, $\mathrm{I}^{\prime \prime}=100 \mathrm{lbs}$.
(b) Methods.-Start force polygon at ( $7 . \mathrm{O}^{\prime \prime}$, I.. $\mathrm{O}^{\prime \prime}$ ). Take pole at ( $3.8^{\prime \prime}, 0.0^{\prime \prime}$ ). Start equilibrium polygon at ( $7.0^{\prime \prime}, 6.3^{\prime \prime}$ ). Take new pole at ( $2.2^{\prime \prime}, 0.0^{\prime \prime}$ ), and draw new polygon starting at ( $7.0^{\prime \prime}, 6.3^{\prime \prime}$ ).
(c) Results.-The resultant is a force, $R$, and acts through the intersection of the strings $d, e$ and $d^{\prime}, e^{\prime}$, and is parallel to the closing line in force polygon. If corresponding strings in equilibrium polygon are produced to an intersection, the points of intersection, $1,2,3,4,5$, will lie in a straight line which will be parallel to the line $O-O^{\prime}$ joining the poles of the force polygons. This relation is due to the reciprocal nature of the force and equilibrium polygons, and may be proved as follows: In the force polygon the force $P_{4}$ may be resolved into the rays $c$ and $d$, it may likewise be resolved into the rays $c^{\prime}$ and $d^{\prime}$. In like manner it may be seen that the force $O-O^{\prime}$ can be resolved into the $d$ and $d^{\prime}$, or into $c$ and $c^{\prime}$. Now if the strings $d$ and $d^{\prime}$ are drawn through the point 4 , and the strings $c$ and $c^{\prime}$ are drawn, they must intersect in the point 3 , and $4-3$ must be parallel to $O-O^{\prime}$. For the resultant of $d$ and $d^{\prime}$ is equal to $O-O^{\prime}$ and must act in a line parallel to $O-O^{\prime}$; likewise the resultant of $c$ and $c^{\prime}$ is equal to $O-O^{\prime}$ and must act parallel to $O-O^{\prime}$; and in order to have equilibrium 3-4 must be parallel to $O-O^{\prime}$.

In like manner it may be proved that $\mathrm{r}, 2,3,4,5$, are in a straight line parallel to $O-O^{\prime}$.

From the above it will be seen that to have equilibrium in a system of non-concurrent forces it is necessary that the force polygon and its corresponding equilibrium polygons must close, or that two equilibrium polygons must close.


Problem 2 a. Resultant of Non-concurrent Forces.
(a) Problem.-Given the following non-concurrent forces:

$$
\begin{gathered}
P_{1} \frac{700}{150^{\circ}}\left(7.0^{\prime \prime}, 6.3^{\prime \prime}\right), \quad P_{2} \frac{270}{00^{\circ}}\left(0.5^{\prime \prime}, 9 \cdot 3^{\prime \prime}\right), \quad P_{3} \frac{350}{205^{\circ}}\left(7.0^{\prime \prime}, 6.6^{\prime \prime}\right), \\
\\
P_{4} \frac{300}{15^{\circ}}\left(0.8^{\prime \prime}, 8.5^{\prime \prime}\right) .
\end{gathered}
$$

The rest of the statement is the same as for Problem 2.

## Problem 3. Test of Equilibrium of Forces.

(a) Problem.-Test the following forces for equilibrium by means of force and equilibrium polygons:

$$
\begin{aligned}
& P_{1} \frac{7.8}{90^{\circ}}\left(4.75^{\prime \prime}, 0.0^{\prime \prime}\right) ; \quad P_{2} \frac{10.8}{45^{\circ}}\left(4.75^{\prime \prime}, 7.7^{\prime \prime}\right) ; \quad P_{3} \frac{12.2}{0^{\circ}}\left(0.0^{\prime \prime}, 7.0^{\prime \prime}\right) ; \\
& P_{4} \frac{13.2}{300^{\circ}}\left(4.75^{\prime \prime}, 6.4^{\prime \prime}\right) ; \quad P_{5} \frac{19.35}{210^{\circ}}\left(2.75^{\prime \prime}, 6.4^{\prime \prime}\right) ; \quad P_{6} \frac{11.3}{150^{\circ}}\left(2.75^{\prime \prime}, 7.7^{\prime \prime}\right)
\end{aligned}
$$

The forces are given in tons. Check by using a second pole and equilibrium polygon; also draw a line through the intersection of the corresponding rays, and check as in Problem 2. Give amount and direction of the equilibrant. Scale of forces, $\mathrm{I}^{\prime \prime}=5$ tons.
(b) Methods.-Start force polygon at ( $0.8^{\prime \prime}, \mathrm{I} .5^{\prime \prime}$ ). Take first pole at $\left(3.2^{\prime \prime}, 2.7^{\prime \prime}\right)$. Start equilibrium polygon at ( $4.75^{\prime \prime}, 9.1^{\prime \prime}$ ). Take second pole at ( $4.0^{\prime \prime}, 3.2^{\prime \prime}$ ). Start second equilibrium polygon at (4.75", 8.2").
(c) Results.-If the system of forces was in equilibrium the equilibrium polygons would close, and the first and last strings $f$ and $f$, and $f^{\prime}$ and $f^{\prime}$ would coincide, respectively. The equilibrant will be equal to a couple with a moment represented by the rays $f$ or $f^{\prime}$ multiplied by the distance $h$ or $h^{\prime}$. In general in any system of non-current forces if the force polygon closes the equilibrant of the system is a couple. If the system is in equilibrium the arm of the couple is zero. It is evident that in order that any system of non-concurrent forces be in equilibrium it is necessary that both the force polygon and an equilibrium polygon must close. The check line must be parallel to the line $O-O^{\prime}$ joining the poles, and also pass through the intersections of corresponding rays as in Problem 2.

## Problem 3a. Test of Equilibrium of Forces.

(a) Problem.-Test the following forces for equilibrium by means of force and equilibrium polygons:

$$
\begin{array}{ll}
P_{1} \frac{7.8}{90^{\circ}}\left(4.75^{\prime \prime}, 0.0^{\prime \prime}\right) ; \quad P_{2} \frac{10.8}{45^{\circ}}\left(4.75^{\prime \prime}, 7.7^{\prime \prime}\right) ; \quad P_{3} \frac{13.93}{0^{\circ}}\left(0.0^{\prime \prime}, 7.0^{\prime \prime}\right) ; \\
P_{4} \frac{13.2}{300^{\circ}}\left(4.75^{\prime \prime}, 6.4^{\prime \prime}\right) ; \quad P_{5} \frac{20.35}{210^{\circ}}\left(2.75^{\prime \prime}, 6.4^{\prime \prime}\right) ; \quad P_{6} \frac{12.3}{150^{\circ}}\left(2.75^{\prime \prime}, 7.7^{\prime \prime}\right)
\end{array}
$$



The forces are given in tons. Check by using a second pole and equilibrium polygon; also draw a line through the intersection of the corresponding rays, and check as in Problem 2. Give amount and direction of the equilibrant. Scale of forces, $\mathrm{I}^{\prime \prime}=5$ tons.

## Problem 4. Resolution of Forces.

(a) Problem.-Given the following forces:

$$
P_{1} \frac{13.2}{270^{\circ}}\left(1.0^{\prime \prime},-\right) ; \quad P_{2} \frac{5.0}{270^{\circ}}\left(2.8^{\prime \prime},-\right) ; P_{3} \frac{3.2}{270^{\circ}}\left(6.8^{\prime \prime},-\right)
$$

Forces are given in tons. (I) Find the resultant, $R$, by means of force and equilibrium polygons. (2) Resolve $R$ into two parallel forces $P^{\prime} \frac{?}{270^{\circ}}\left(3 \cdot 2^{\prime \prime},-\right)$ and $P^{\prime \prime} \frac{?}{90^{\circ}}\left(5 \cdot 4^{\prime \prime},-\right)$. (3) Find the moment, $M$, of
$R$ about a point $Z$ at (4.0", -). Check by the algebraic method giving all equations. Scale of forces, $\mathrm{I}^{\prime \prime}=5$ tons.
(b) Methods.-Start force polygon at ( $5.7^{\prime \prime}, 0.5^{\prime \prime}$ ), and take pole at (土. $7^{\prime \prime}, 3 . \mathrm{o}^{\prime \prime}$ ). In the algebraic method take moments about the left border in finding the point of application of $R$, and take moments in the line of action of $P^{\prime \prime}$ in resolving $R$ into $P^{\prime}$ and $P^{\prime \prime}$.
(c) Results.-(1) The position of $R$ is at the intersection of strings $a$ and $d$. (2) Prolong string $a$ until it intersects $P^{\prime}$, take the intersection of string $d$ with $P^{\prime \prime}$; then string $e$ is the closing line of the polygon. (3) The moment of $R$ is found graphically by multiplying the intercept, $y$, by the pole distance, $H$. (4) To find position of $R$ algebraically take moment of $P_{1}, P_{2}$, and $P_{3}$, about the left border, and divide by $R$, which is the sum of $P_{1}, P_{2}, P_{3}$. (5) The moment of $R$ about $Z$ is equal to $R \times(4.0-2.28)^{\prime \prime},=36.8$ in.-tons.

Problem 4a. Resolution of Forces.
(a) Problem.-Given the following forces:

$$
P_{1} \frac{13.2}{270^{\circ}}\left(\mathrm{I} . \mathrm{o}^{\prime \prime},-\right) ; \quad P_{2} \frac{5.0}{270^{\circ}}\left(2.8^{\prime \prime},-\right) ; \quad P_{3} \frac{4.0}{270^{\circ}}\left(7.0^{\prime \prime},-\right)
$$

Forces are given in tons. (I) Find the resultant, $R$, by means of force and equilibrium polygons. (2) Resolve $R$ into two parallel forces $P^{\prime} \frac{?}{270^{\circ}}\left(3.2^{\prime \prime},-\right)$ and $P^{\prime \prime} \frac{?}{90^{\circ}}\left(5 \cdot 4^{\prime \prime},-\right)$. (3) Find the moment, $M$, of $R$ about a point $Z$ at $\left(4 \cdot 5^{\prime \prime},-\right)$. Check by the algebraic method giving all equations. Scale of forces, $I^{\prime \prime}=5$ tons.


## Problem 5. Center of Gravity of an Area.

(a) Problem.-Find the center of gravity of the given figure about the $X$ - and $Y$-axes by graphics. Give the co-ordinates of the C. G. referred to $O$ as the origin. Show all force and equilibrium polygons. Check by the algebraic method stating all equations. Scale of figure, $\mathrm{I}^{\prime \prime}=\mathrm{I}^{\prime \prime}$. Scale of forces, $\mathrm{I}^{\prime \prime}=\mathrm{I}$ sq. in.
(b) Methods.-Start force polygon (b) at point (2.9", $8.8^{\prime \prime}$ ) and take pole at (5.6", 5.4"). Start force polygon (c) at ( $6.9^{\prime \prime}, 0.6^{\prime \prime}$ ), and take pole at $\left(3.25^{\prime \prime}, 2.8^{\prime \prime}\right)$. In the algebraic check take moments about the left-hand edge and the lower edge of the figure.
(c) Results.-The center of gravity of the figure will come at the intersection of the resultants $R$ and $R^{\prime}$, which is at the center of area. The areas $P_{1}, P_{2}$, and $P_{3}$, may be taken as acting at any angle, but maximum accuracy is attained when the forces are assumed as acting at right angles. If the figure has an axis of symmetry (an axis such that every point on one side of the axis has a corresponding point on the other side at the same distance from the axis) but one force and equilibrium polygon is required.

Problem 5a. Center of Gravity of an Area.
(a) Problem.-Find the center of gravity of a $6^{\prime \prime} \times 4^{\prime \prime} \times \mathrm{I}^{\prime \prime}$ angle with the long leg vertical and short leg to the right about the $X$ - and $Y$-axes by graphics. Give the co-ordinates of the C. G. referred to $O$ as the origin. Show all force and equilibrium polygons. Check by the algebraic method stating all equations. Scale of figure, $\mathrm{I}^{\prime \prime}=2^{\prime \prime}$. Scale of forces, $\mathrm{I}^{\prime \prime}=2 \mathrm{sq}$. in.


## Problem 6. Moment of Inertia of an Area.

(a) Problem. Calculate the moment of ineltia, $I$, of a standard $9^{\prime \prime}$ [@ I 3.25 lbs., about an axis through its center at right angles to the web: (1) By Culmann's approximate method; (2) by Mohr's approximate method; (3) by the algebraic method. Omit the fillets. Scale of channel, $\mathrm{I}^{\prime \prime}=\mathrm{I}^{\prime \prime}$. Scale of forces, $\mathrm{I}^{\prime \prime}=\mathrm{I}$ sq. in.
(b) Methods.-Divide the channel into convenient sections and consider the areas as forces acting through their centers of gravity. (I) Culmann's method (Fig. 22). Start force polygon (a) at (3.5", 9.1"), and take pole at $\left(5.45^{\prime \prime}, 4.6^{\prime \prime}\right)$. Draw equilibrium polygon (b). Now with intercepts $a-b, b-c, c-d, d-e, e-f, f-g, g-h, h-i$, as forces, and a new pole at ( $4.5^{\prime \prime}$, o. $\mathrm{I}^{\prime \prime}$ ) construct equilibrium polygon (d). The moment of inertia is (approximately) $I=H \times H^{\prime} \times y$. (2) Mohr's method (Fig. 23). Calculate the area of the equilibrium polygon (b) by means of the planimeter or by dividing it into triangles and (approximately) $I=$ area equilibrium polygon (b) $\times 2 \mathrm{H}$. If the area is divided into an infinite number of sections, or if the true curve of equilibrium be drawn through the points determined, this method gives the true value of $I$. (3) Algebraic method. The moment of inertia about the center line is $I=I^{\prime}+A d^{2}+2 I^{\prime \prime}$ where $I^{\prime}=$ moment of inertia of the main rectangle ; $A=$ area of the two flanges ; $d=$ distance of the center of gravity of the flanges from the center line; and $I^{\prime \prime}=$ moment of inertia of each flange about an axis through its center of gravity parallel to the center line.
(c) Results.-The algebraic method gives the true value of $I$; Mohr's method gives a value more nearly correct than Culmann's method, as would have been expected. The values of $I$ given in the various hand-books are calculated by the algebraic method.

Problem 6a. Moment of Inertia of an Area.
(a) Problem.-Calculate the moment of inertia, $I$, of a standard $9^{\prime \prime}$ [@ 15 lbs., about an axis through its center at right angles to the web: (1) By Culmann's approximate method; (2) by Mohr's approximate method; (3) by the algebraic method. Omit the fillets. Scale of channel, $\mathrm{I}^{\prime \prime}=\mathrm{I}^{\prime \prime}$. Scale of forces, $\mathrm{I}^{\prime \prime}=\mathrm{I}$ sq. in.


## Problem 7. Construction of an Inertia Ellipse and an Inertia Circle.

(a) Problem.-Given the following data for an angle $7^{\prime \prime} \times 3^{1 / 22^{\prime \prime}}$ $\times \mathrm{I}^{\prime \prime} ; A=9.50$ sq. in., $I_{1}=7.53^{\prime \prime 4}, I_{2}=45.37^{\prime \prime 4} ; r_{1}=0.89^{\prime \prime} ; r_{2}=$ 2.19" ${ }^{\prime \prime} r_{3}=0.74^{\prime \prime} ; \tan a=0.24 \mathrm{I} ;$ C. G. (2.71", 0.96"), see Cambria, pp. 176, 177. (1) Construct the inertia ellipse. (2) Construct the inertia circle. Omit the fillets. Scale of the angle, $\mathrm{I}^{\prime \prime}=\mathrm{I}^{\prime \prime}$.
(b) Methods. (1) Inertia Ellipse.-Construct angle $a, \tan \alpha=$ 0.24 I ; and draw axes 3-3 and 4-4, which are the principal axes of the inertia ellipse. Calculate $r_{4}$ from the relation $I_{1}+I_{2}=I_{3}+I_{4}$, from which $r_{1}{ }^{2}+r_{2}{ }^{2}=r_{3}{ }^{2}+r_{4}{ }^{2}$, and $r_{4}=2.25^{\prime \prime}$. Construct the enclosing rectangle of the ellipse on the axes 3-3 and 4-4, and inscribe an ellipse in this rectangle; this ellipse is the central inertia ellipse.

Calculate $Z_{1-2}$ from the relation $Z_{1-2}=A_{1} \times h_{1} \times k_{1}+A_{2} \times h_{2}$ $\times k_{2}$. Also calculate $c_{1}$ and $\mathrm{c}_{2}$ from the relation $Z_{1-2}=A c_{1} r_{2}=A c_{2} r_{1}$. Compare the calculated values of $c_{1}$ and $c_{2}$ with the scaled values on the ellipse. Note that $c_{1}$ and $c_{2}$ are zero for the principal axes.
(2) Inertia Circle.-Calculate the product of inertia, $Z_{1-2}=-9.67$. From any given point, $a$, lay off $I_{1}=7.53$ to the left extending to $b$, lay off $I_{2}=45.37$ to the right from $b$, and extending to $c$. At $a$ erect a perpendicular $a-d=Z_{1-2}=-9.67$. Then with center $O$, midway between $a$ and $c$, and with a radius $O-d$ describe a circle, which will be the inertia circle. A line drawn through $d$ and $e$ will be parallel to the principal axis $4-4$, and the diameter of the inertia circle will be the maximum value of $I_{2}-I_{1}$.
(c) Results.-(1) The inertia ellipse drawn is the central ellipse of inertia, and is the smallest ellipse that can be drawn. The radii of gyration about any axis can be found directly from the inertia ellipse.
(2) The moments of inertia about any axis can be found directly from the circle of inertia.

## Problem 7a. Construction of an Inertia Ellipse and an Inertia Circle.

(a) Problem.-Given the data for an angle $7^{\prime \prime} \times 3^{1 / 2 \prime} \times 7 / 8^{\prime \prime}$; see Cambria, pp. 176, 177. (1) Construct the inertia ellipse. (2) Construct the inertia circle. Omit the fillets. Scale of the angle, $\mathrm{I}^{\prime \prime}=\mathrm{I}^{\prime \prime}$.


References: "The Determination of Unit Stresses in the General Case of Flexure" by Professor L. J. Johnson in Assoc. Eng. Soc., Vol. XXVIII; Appendix D. Maurer's "Technical Mechanics"; Muller-Breslau's "Graphische Statik der Baukonstruktionen," Band I.

## Problem 8. Stresses in a Roof Truss by Graphic and Algebraic Resolution.

(a) Problem.-Given a Fink truss, span $40^{\prime}-0^{\prime \prime}$, pitch $30^{\circ}$; trusses spaced $\mathrm{I} 2^{\prime}-\mathrm{o}^{\prime \prime}$; load 40 lbs . per sq. ft. of horizontal projection. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution, and check by algebraic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=8^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=6000 \mathrm{lbs}$.
(b) Methods.-Start force polygon at (6.25", 5.6"). Lay off the loads in the order $P_{1}, P_{2}, P_{1}^{\prime}$, from the top downward. Construct a force polygon, and draw an equilibrium polygon as in Fig. 14, and calculate the reactions $R_{1}$ and $R_{2}$ by means of the closing line as in Fig. 15. Construct stress diagram beginning at $L_{0}$ and analyzing the joints in the order, $L_{0}, U_{1}, L_{1}, U_{2}$, etc., checking at $L_{0}^{\prime}$. Arrows acting toward joints in the truss and toward the ends of the lines in the stress diagram indicate compression, while arrows acting away from the joints and ends of lines respectively, indicate tension. Use one arrow in the stress diagram the first time a force is used, and two arrows the second time. In algebraic resolution the sum of the horizontal components at any joint are placed,equal to zero, and the sum of the vertical components are placed equal to zero, and the solution of these two sets of equations gives the required stresses.
(c) Results.-The top chord is in compression, while the bottom chord is in tension. In the Fink truss it will be seen that the long web members are in tension, while the short web members are in compression. This makes the truss a very economical one.

## Problem 8a. Stresses in a Roof Truss by Graphic and Algebraic Resolution.

(a) Problem.-Given a Fink truss, span $40^{\prime}-\mathrm{O}^{\prime \prime}$, pitch $1 / 3$; trusses spaced $14^{\prime}-\mathrm{o}^{\prime \prime}$; load 40 lbs . per sq. ft. of horizontal projection. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution, and check by algebraic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=8^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=5000 \mathrm{lbs}$.


## Problem 9. Dead Load Stresses in a Triangular Truss by Graphic Resolution.

(a) Problem.-Given a triangular truss, span $60^{\prime}-0^{\prime \prime}$; pitch $1 / 3$; camber of the bottom chord $3^{\prime}-0^{\prime \prime}$; trusses spaced $14^{\prime}-0^{\prime \prime}$; load 40 lbs . per sq. ft . of horizontål projection. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=1 \mathrm{o}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=5000 \mathrm{lbs}$.
(b) Methods.-Start the truss at ( $0.75^{\prime \prime}, 7.0^{\prime \prime}$ ). Start the stress diagram at ( $6.75^{\prime \prime}, 6.25^{\prime \prime}$ ). Calculate the stresses beginning at $R_{1}$, as described in Fig. 27, using care to analyze each joint before proceeding to the next. Check at $R_{2}$.
(c) Results.-The upper chord is in compression while the lower chord is in tension. The vertical web members are in compression while the inclined web members are in tension for dead loads. As a check the points $2,4,6$, should be in a straight line. The partial loads coming on the reactions (not shown) are not considered as they have no effect on the stresses in the truss. This truss is a triangular Pratt and is quite economical, but is somewhat more expensive in material and labor than the Fink truss. This type of truss is much used for combination trusses, in which the tension members are made of iron or steel, while the compression members are made of timber. The dead joint load will be equal to the horizontal projection of the area supported by a panel point, multiplied by the dead load per square foot, is equal to $14 \times 7 \frac{1}{2} \times 40=4200 \mathrm{lbs}$.

Problem ga. Dead Load Stresses in a Triangular Truss by Graphic Resolution.
(a) Problem.-Given a triangular truss, span $60^{\prime}-\mathrm{o}^{\prime \prime}$; pitch $1 / 3$; camber of the bottom chord $2^{\prime}-\mathrm{O}^{\prime \prime}$; trusses spaced $16^{\prime}-\mathrm{O}^{\prime \prime}$; load 40 lbs . per sq. ft. of horizontal projection. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=\mathrm{IO}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=500 \mathrm{lbs}$.


## Problem io. Wind Load Stresses in a Triangular Truss-No Rollers-by Graphic Resolution.

(a) Problem.-Given a triangular truss, span $60^{\prime}-0^{\prime \prime}$, pitch $1 / 3$, camber of lower chord $3^{\prime}-\mathrm{O}^{\prime \prime}$, trusses spaced $14^{\prime}-\mathrm{O}^{\prime \prime}$, wind load normal component of a horizontal wind load of 30 lbs . per sq. ft., no rollers. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Take $P$ as 3300 lbs . Scale of truss, $\mathrm{I}^{\prime \prime}=1 \mathrm{IO}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.
(b) Methods.-Start stress diagram at ( $4.65^{\prime \prime}, 6.6^{\prime \prime}$ ). The reactions will be parallel to each other and to the resultant of the external loads. The equilibrium polygon may be started at any convenient point in one reaction, closing up on the other one. The closing line of the equilibrium polygon will always have its end in the reactions. The calculation of stresses is begun at $R_{1}$, and is checked up at $R_{2}$.
(c) Results.-The stresses are of the same kind in the chords as for dead loads as given in Problem 9, while the webs on the leeward side are not stressed. The load $P_{0}$ has no effect on the stresses in the truss. Calculate the vertical component of the wind load by means of Duchemin's formula (5), as plotted in Fig. 6 (page 15). The normal wind joint load will be equal to $14 \times 9 \times 26=3276$, which is taken as 3300 lbs . For a discussion on the different conditions of the ends of trusses, see Chapter VII.

Problem ioa. Wind Load Stresses in a Triangular Truss-No Rollers-by Graphic Resolution.
(a) Problem.-Given a triangular truss, span $60^{\prime}-0^{\prime \prime}$, pitch $1 / 3$, camber of lower chord $2^{\prime}-0^{\prime \prime}$, trusses spaced $16^{\prime}-0^{\prime \prime}$, wind load normal component of a horizontal wind load of 30 lbs . per sq. ft., no rollers. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Take $P$ as 3800 lbs. Scale of truss, $\mathrm{I}^{\prime \prime}=1 \mathrm{IO}^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.


## Problem if. Dead Load Stresses in a Fink Truss by Graphic Resolution.

(a) Problem.-Given a Fink truss, span $60^{\prime}-0^{\prime \prime}$, pitch $1 / 3$, camber of lower truss $3^{\prime}-\mathrm{o}^{\prime \prime}$, trusses spaced $\mathrm{I}^{\prime}{ }^{\prime}-\mathrm{o}^{\prime \prime}$, load 40 lbs . per sq. ft . of horizontal projection. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=\mathrm{Io}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=5000 \mathrm{lbs}$.
(b) Methods.-Start the truss at ( $0.75^{\prime \prime}, 7.0^{\prime \prime}$ ). Start the stress diagram at ( $6.75^{\prime \prime}, 6.25^{\prime \prime}$ ). Calculate the stresses as described in Figs. 30 and 34 , replacing the members $4-5$ and $5-6$, temporarily by the dotted member shown. The stress diagram is then carried through to the point 7 , and then the stresses in members $5-6$ and $4-5$ are easily obtained. Carry the stress diagram through and check at $\mathrm{R}_{2}$.
(c) Results.-The upper chord is in compression and the lower chord is in tension, the stresses being practically the same as in the triangular truss in Problem 9. In the webs it will be seen that the long members are in tension, while the short members are in compression. The loads coming on the reaction are not considered, as they have no effect on the stresses in the truss, as can be seen by comparing with the truss in Fig. 30. As a check the points 1, 2, 5, 6, in the stress diagram should be in a straight line. The dead joint load will be equal to the horizontal projection of the area supported by a panel point, multiplied by the dead load per square foot, is equal to $14 \times 7 \mathrm{I} / 2$ $\times 40=4200 \mathrm{lbs}$.

## Problem ila. Dead Load Stresses in a Fink Truss by Graphic Resolution.

(a) Problem.-Given a Fink truss, span $60^{\prime}-\mathrm{o}^{\prime \prime}$, pitch $\mathrm{I} / 3$, camber of lower truss $2^{\prime}-\mathrm{o}^{\prime \prime}$, trusses spaced $16^{\prime}-\mathrm{o}^{\prime \prime}$, load 40 lbs . per sq. ft. of horizontal projection. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=\mathrm{Io}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=5000 \mathrm{lbs}$.


## Problem 12. Wind Load Stresses in a Fink Truss-Rollers Lee-ward-by Graphic Resolution.

(a) Problem.-Given the same truss as in Problem II. Wind load to be the normal component of a horizontal wind load of 30 lbs . per sq. ft. The truss is assumed to have frictionless rollers under the leeward side. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=1 \mathrm{o}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.
(b) Methods.-Start stress diagram at ( $4.75^{\prime \prime}, 6.55^{\prime \prime}$ ). The reaction $R_{2}$ will be vertical, while the direction of $R_{1}$ will be unknown. Use the method of calculating the reactions described on page 51, and in Fig. 33; noting that the vertical components of the reactions are independent of the conditions of the ends of the truss. In calculating the stresses the ambiguity of stresses at point 3-4-7-4-y is removed by substituting the dotted member shown, for members $4-5$ and 5-6. The calculation of the stresses is begun at $R_{1}$, and is checked up at $R_{2}$.
(c) Results.-The load $P_{1}$ has no effect on the stresses in the truss. The stresses in the members are of the same kind as for dead loads as given in Problem II, except that there are no stresses in the web members on the leeward side.

Problem iza. Wind Load Stresses in a Fink Truss-Rollers Leeward-by Graphic Resolution.
(a) Problem.-Given the same truss as in Problem Ira. Wind load to be the normal component of a horizontal wind load of 30 lbs . per sq. ft . The truss is assumed to have frictionless rollers under the leeward side. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=\mathrm{IO}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.


Problem 13. Wind Load Stresses in a Fink Truss-Rollers on the Windward Side-by Graphic Resolution.
(a) Problem.-Given the same truss and wind load as in Problem 12, and with rollers under the windward side. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=\mathrm{IO}^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.
(b) Methods.-Start stress diagram at (4.6", 6.7"). Reaction $R_{1}$ will be vertical, while the direction of $R_{2}$ will be unknown, the only known point in its line of action being at the right end of the truss. Use the method for finding the reactions described on page 52 and in Fig. 34. In this solution the equilibrium polygon is started at the right reaction, the only known point in $R_{2}$, and the polygon is drawn. The intersection of $R_{1}$ in the force polygon, and a line through $O$, parallel to the closing line is at $Y$, and $R_{2}$ is then determined in magnitude and direction. The stress diagram is carried through and checked at $R_{2}$.
(c) Results.-The load $P_{1}$ must be considered as it produces stresses in the truss. If $R_{2}$ coincides with the top chord there will be no stresses in the other members of the truss on the leeward side; if line of action of $R_{2}$ passes outside and above the truss the lower chord will be in tension; while if the line of action is below the upper chord the lower chord will be in compression. These statements may be checked by taking moments about the upper peak of the truss. It will be seen in Problems II, 12, and I3 that there will be no reversal of stress when the dead load and wind load stresses are combined. This is commonly true for simple Fink trusses resting on walls; but is not true for Fink trusses supported on columns, nor is it always true for Fink trusses simply supported.

Problem iza. Wind Load Stresses in a Fink Truss-Rollers on the Windward Side-by Graphic Resolution.
(a) Problem.-Given the same truss and wind load as in Problem i2a, and with rollers under the windward side. Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=1 \mathrm{o}^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.


## Problem 14. Wind and Ceiling Load Stresses in an Unsymmetrical Truss, by Graphic Resolution.

(a) Problem.-Given the unsymmetrical triangular truss, span $50^{\prime}-o^{\prime \prime}$, height $16^{\prime}-0^{\prime \prime}$, rollers leeward, wind joint load 4000 lbs ., ceiling joint load 3000 lbs . Calculate the stresses due to both systems of loading by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=8^{\prime}-0^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=4000 \mathrm{lbs}$.
(b) Methods.-Calculate the reactions due to the wind loads, using the method of Fig. 33. Calculate the reactions due to ceiling loads. Then place the $y$ point of the wind load line on the point separating the ceiling load reactions (the $x$ point). The wind loads are laid off in order downwards, while the ceiling loads are laid off in order upwards. The left reaction, $R_{1}$, is the resultant of $R_{1 \mathrm{w}}$ and $R_{1 \mathrm{D}}$ while the right reaction, $R_{2}$, is the resultant of $R_{2 \mathrm{w}}$ and $R_{2 \mathrm{D}}$. The calculation of the stresses is begun at $R_{1}$, as in Problem 1o. The stresses are then calculated by passing to joint $C_{1}$, then to joint $P_{2}$, then to $C_{2}$, etc., until the stress diagram is checked up at $R_{2}$.
(c) Results.-The members 1-2 and 7-8 are simply hangers to carry the ceiling loads. The triangular truss in this problem is of the Howe type, the verticals being in tension, while the diagonal web members are in compression. This truss is expensive to build of iron or steel but is quite a satisfactory type where iron is expensive and wood is cheap, and is used for the struts.

Problem iqa. Wind and Ceiling Load Stresses in an Unsymmetrical Truss, by Graphic Resolution.
(a) Problem.-Given the unsymmetrical triangular truss span $50^{\prime}-0^{\prime \prime}$, height, $16^{\prime}-0^{\prime \prime}$, rollers windward, wind joint load 4000 lbs ., ceiling joint load 3000 lbs . Calculate the stresses due to both systems of loading by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=8^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=4000 \mathrm{lbs}$.


## Problem 15. Dead Load Stresses in a Triangular Truss by Graphic and Algebraic Moments.

(a) Problem.-Given a triangular truss, span $60^{\prime}-0^{\prime \prime}$, pitch $1 / 4$, trusses spaced $15^{\prime}-\mathrm{o}^{\prime \prime}$, dead load 40 lbs. per sq. ft. of horizontal projection. Calculate the stresses by graphic moments. Check by calculating the stresses by algebraic moments, giving all equations. Scale of truss, $\mathrm{I}^{\prime \prime}=1 \mathrm{o}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=\mathrm{Io}, 000 \mathrm{lbs}$. Use pole distance $H=30,000 \mathrm{lbs}$.
(b) Methods.-Use the methods for algebraic and graphic moments described in Fig. 28 and Fig. 29, respectively. Calculate all moment arms and check by scaling from the diagram. The pole distance is measured in pounds, while the intercepts are measured to the same scale as the truss. Take the section and choose the center of moments so that but one unknown force will produce moments. Take the unknown external force as acting from the outside toward the cut section, the sign of the result if plus will indicate compression, if minus tension. Be careful to take forces on one side of the cut section only.
(c) Results.-The kinds of stress in the members are the same as in Problem 9. The center of moments used in calculating each stress can be easily determined from the equations. The method of algebraic moments is much used for calculating stresses in bridges, and other frameworks which carry moving loads. The method of graphic moments is used principally as an explanatory method.

## Problem ifa. Dead Load Stresses in a Triangular Truss by Graphic and Algebraic Moments.

(a) Problem.-Given a triangular truss, span $60^{\prime}-0^{\prime \prime}$, pitch $1 / 3$, trusses spaced $16^{\prime}-\mathrm{o}^{\prime \prime}$, dead lead 40 lbs . per sq. ft. of horizontal projection. Calculate the stresses by graphic moments. Check by calculating the stresses by algebraic moments, giving all equations. Scale of truss, $\mathrm{I}^{\prime \prime}=\mathrm{Io}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=\mathrm{Io}, 000 \mathrm{lbs}$. Use pole distance $H=30,000 \mathrm{lbs}$.


Problem 16. Dead Load Stresses in a Cantilever Truss by Graphic Resolution.
(a) Problem.-Given the Fink cantilever truss, span $40^{\prime}-0^{\prime \prime}$, depth $12^{\prime}-0^{\prime \prime}$, joint load 2000 lbs . Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=8^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=1500 \mathrm{lbs}$.
(b) Methods.-Calculate the reactions as in Fig. 16, page 30, noting that the loads in the two cases are laid off in different order. Note that the two reactions and the resultant of the external loads meet in a point, and that the reactions can be determined by means of this principle. The stress diagram is started with the load $P_{1}$ and is closed at $R_{1}$ and $R_{2}$.
(c) Results.-The upper chord is in tension, while the bottom chord is in compression, which is the reverse of conditions in simple trusses. In calculating the stresses due to wind load in this truss, the reaction $R_{1}$ will be in the line of $7-4$, and $R_{2}$ will pass through $A$, as in the case of dead loads. The resultant of the wind loads and the two reactions will meet in a point, and the solution is essentially the same as for dead loads. It should be noted that the closing line of the equilibrium polygon, $A-a$, has its ends on the line of action of the resultants $R_{1}$ and $R_{2}$.

Problem 16a. Dead Load Stresses in a Cantilever Truss by Graphic Resolution.
(a) Problem.-Given the Fink cantilever truss, span $50^{\prime}-0^{\prime \prime}$, depth $15^{\prime}-\mathrm{o}^{\prime \prime}$, joint load 2500 lbs . Calculate the reactions by means of force and equilibrium polygons. Calculate the stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=8^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=2000 \mathrm{lbs}$.
 Graphics.
(a) Problem.—Given a $12^{\prime \prime} \mathrm{I}$ @ $3 \mathrm{I}^{1 / 2} 2^{\prime}$ lbs. per foot, span $40^{\prime}-\mathrm{o}^{\prime \prime}$, load 5000 lbs . applied $\mathrm{I} 6^{\prime}-\mathrm{o}^{\prime \prime}$ from the left support. $I=215.8 \mathrm{in} .^{4}$. $E=28,000,000$. Calculate the maximum deflection due to the load, and the maximum deflection under the load by the graphic method. Scale of beam, $\mathrm{I}^{\prime \prime}=6^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=2000 \mathrm{lbs}$. Pole distance, $H=4000 \mathrm{lbs}$. Scale of areas, $\mathrm{I}^{\prime \prime}=60 \mathrm{sq}$. ft. Pole distance, $H^{\prime}=240$ sq. ft.
(b) Methods.-Construct force polygon (a) and draw bendingmoment polygon (b). Divide polygon (b) into segments, and assume that each area acts as a load through its center of gravity. Construct force polygon (c), and draw equilibrium polygon (d). Polygon (d) is a curve which has ordinates proportional to the true deflections.
(c) Results.-The maximum deflection comes between the load and the center of the beam. If the area of the polygon (b) was measured in square inches and the ordinates in (d) measured in inches the deflection would be $\Delta=y \times H \times H^{\prime} \div E I$. In the problem this result must be multiplied by 1728 . The closing lines of polygons (b) and (d) need not be horizontal. The solution given above may be very simply stated as follows: Construct the bending-moment polygon for the given loading on the beam. Load the beam with this bendingmoment polygon, and with a force polygon having a pole distance equal to $E I$, construct an equilibrium polygon ; this polygon will be the elastic curve of the beam. It is not commonly convenient to use a pole distance equal to $E I$, and a pole distance $H$ is used, where $n H$ equals $E I$. For a discussion of this subject see Chapter XVa.

Problem iya. Calculation of the Deflection of a Steel Beam by Graphics.
(a) Problem.-Given a $12^{\prime \prime}$ I @ $3 \mathrm{I}^{1 / 2} \mathrm{lbs}$. per foot span $40^{\prime}-\mathrm{o}^{\prime \prime}$, load 3000 lbs . applied $16^{\prime}-0^{\prime \prime}$ from the left support, and 3000 lbs . applied $\mathrm{I} 2^{\prime}-\mathrm{o}^{\prime \prime}$ from the right support. $I=215.8 \mathrm{in} .^{4} . \quad E=28,000,-$ ooo. Calculate the maximum deflection due to the load, and the maximum deflection under the load by the graphic method. Scale of

beam, $\mathrm{I}^{\prime \prime}=6^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=2000 \mathrm{lbs}$. Pole distance, $H=4000 \mathrm{lbs}$. Scale of areas, $\mathrm{I}^{\prime \prime}=60 \mathrm{sq} . \mathrm{ft}$. Pole distance, $H^{\prime}=240$ sq. ft.

## Problem 18. Dead Load Stresses in a Warren Truss by Graphic Resolution.

(a) Problem.-Given a Warren truss, span $120^{\prime}-\mathrm{o}^{\prime \prime}$, panel length $20^{\prime}-0^{\prime \prime}$, depth $20^{\prime}-0^{\prime \prime}$, dead load 700 lbs . per ft. per truss. Calculate the dead load stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}-16^{\prime}-0^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=12,000 \mathrm{lbs}$.
(b) Methods.-The loads beginning with the first load on the left are laid off from the bottom upwards. The calculation of the stresses is started at the left reaction, and the stress diagram is closed at the right reaction. For additional information on the solution see page 70.
(c) Results.-The top chord is in compression, the bottom chord is in tension; all web members leaning toward the center of the truss are in compression, while the web members leaning toward the abutments are in tension. All web members meeting on the unloaded chord (top chord) have stresses equal in amount but opposite in sign. The stresses in the lower chord are the arithmetical means of the stresses in the top chord. The Warren truss is commonly made of iron or steel, the most common section for the members being two angles placed back to back.

Problem 18a. Dead Load Sresses in a Warren Truss by Graphic Resolution.
(a) Problem.-Given a Warren truss, span $126^{\prime}-\mathrm{O}^{\prime \prime}$, panel length $18^{\prime}-0^{\prime \prime}$, depth $20^{\prime}-0^{\prime \prime}$, dead load 700 lbs . per ft. per truss. Calculate the dead load stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=$ $\mathrm{I}^{\prime}{ }^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=\mathbf{1 2 , 0 0 0} \mathrm{lbs}$.


## Problem ig. Dead Load Stresses in a Howe Truss by Graphic Resolution.

(a) Problem.-Given a Howe truss, span $160^{\prime}-\mathrm{o}^{\prime \prime}$, panel length $20^{\prime}-0^{\prime \prime}$, depth $24^{\prime}-0^{\prime \prime}$, dead load 600 lbs. per lineal foot of truss. Calculate the dead load stresses by graphic resolution. Scale of truss, $\mathrm{r}^{\prime \prime}=$ $25^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=15,000 \mathrm{lbs}$.
(b) Methods.-The loads beginning with the first load on the left are laid off from the bottom upwards. Calculate the stresses by graphic resolution, beginning at $R_{1}$ and checking at $R_{2}$, following the order shown in the stress diagram.
(c) Results.-The top chord is in compression and the bottom chord is in tension as in the Warren truss. All inclined web members are in compression, while all vertical web members are in tension. The stresses in the verticals are equal to the vertical components of the diagonal members meeting them on the unloaded chord. Stresses in certain panels in top and bottom chords are equal.

The Howe truss is commonly built with timber upper and lower chords and diagonal struts, the only iron being the vertical ties and cast iron angle blocks to take the bearing of the timber struts. This makes a very satisfactory truss and is quite economical where timber is cheap.

## Problem 19a. Dead Load Stresses in a Howe Truss by Graphic Resolution.

(a) Problem.-Given a Howe truss, span $162^{\prime}-\mathrm{O}^{\prime \prime}$, panel length $18^{\prime}-0^{\prime \prime}$, depth $24^{\prime}-0^{\prime \prime}$, dead load 600 lbs. per lineal foot of truss. Calculate the dead load stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=$ $25^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=15,000 \mathrm{lbs}$.


Problem 20. Dead Load Stresses in a Pratt Truss by Graphic Resolution.
(a) Problem.-Given a Pratt truss, span $140^{\prime}-0^{\prime \prime}$, panel length $20^{\prime}-0^{\prime \prime}$, depth $24^{\prime}-0^{\prime \prime}$, dead load 800 lbs. per lineal foot per truss. Calculate the dead load stresses by graphic resolution. Scale of truss $\mathrm{I}^{\prime \prime}=20^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=16,000 \mathrm{lbs}$.
(b) Methods.-The loads beginning with the first load on the left are laid off from the bottom upwards. Calculate the stresses by graphic resolution, beginning at $R_{1}$ and checking at $R_{2}$, following the order shown in the stress diagram.
(c) Results.-The top chord is in compression and the bottom chord is in tension as in the Warren and Howe trusses. The inclined web members are in tension, while the vertical posts are in compression. Member $\mathrm{I}-2$ is simply a hanger. There is no stress due to dead loads in the diagonal members in the middle panel. The stresses in the posts are equal to the vertical components of the diagonal members meeting them on the unloaded chord. Stresses in certain panels in the top and bottom chord are equal. The.Pratt truss is quite generally used for steel bridges, and is also used for combination bridges, where the tension members are made of iron or steel and the compression members are made of timber.

Problem 2oa. Dead Load Stresses in a Pratt Truss by Graphic Resolution.
(a) Problem.-Given a Pratt truss, span $160^{\prime}-0^{\prime \prime}$, panel length $20^{\prime}-0^{\prime \prime}$, depth $24^{\prime}-0^{\prime \prime}$, dead load 800 lbs . per lineal feet per truss. Calculate the dead load stresses by graphic resolution. Scale of truss $\mathrm{I}^{\prime \prime}=25^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=20,000 \mathrm{lbs}$.

Graphic Static's.
Problem 20.
Pratt Truss.
$x$ Graphic Resolution. $x$


Dead LoadStress Diagram.

## Problem 21. Dead Load Stresses in a Camel-Back Truss by Graphic Resolution.

(a) Problem.-Given a camel-back (inclined Pratt) truss, span $160^{\prime}-0^{\prime \prime}$, panel length $20^{\prime}-0^{\prime \prime}$, depth at the hip $25^{\prime}-0^{\prime \prime}$, depth at the center $32^{\prime}-0^{\prime \prime}$, dead load 400 lbs . per lineal foot per truss. Calculate dead load stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=25^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=10,000 \mathrm{lbs}$.
(b) Methods.-The loads beginning with the first load on the left are laid off from the bottom upwards. Calculate the stresses by graphic resolution, beginning at $R_{1}$ and checking at $R_{2}$. Follow the order given in the stress diagram.
(c) Results.-The top chord is in compression and the bottom chord is in tension. All inclined web members are in tension; while part of the posts are in tension and part are in compression. Member I-2 is simply a hanger and is always in tension. This type of truss is quite generally used for steel and combination bridges for spans from 150 feet to 200 feet, and also for roof trusses for long span, where it is loaded on the top chord and bottom chord, or on the top chord alone.

## Problem 2ia. Dead Load Stresses in a Camel-Back Truss by Graphic Resolution.

(a) Problem.-Given a camel-back (inclined Pratt) truss, span $180^{\prime}-0^{\prime \prime}$, panel length $20^{\prime}-0^{\prime \prime}$ (three panels with parallel chords), depth at the hip $25^{\prime}-0^{\prime \prime}$, depth at the center $32^{\prime}-0^{\prime \prime}$, dead load 400 lbs . per lineal foot per truss. Calculate dead load stresses by graphic resolution. Scale of truss, $\mathrm{I}^{\prime \prime}=25^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=12,000 \mathrm{lbs}$.


Problem 22. Wind Load Stresses in a Trestle Bent.
(a) Problem.-Given a trestle bent, height $45^{\prime}-0^{\prime \prime}$, width at the base $30^{\prime}-0^{\prime \prime}$, width at the top $9^{\prime}-0^{\prime \prime}$, wind loads $P_{1}, P_{2}, P_{3}, P_{4}$, as shown. Calculate the stresses in the members of the bent due to wind loads by algebraic moments and check by calculating the stresses by graphic resolution. Assume the diagonal members to be tension members, and that the dotted members shown are not acting. Scale of truss, $\mathrm{I}^{\prime \prime}=$ $1 \mathrm{o}^{\prime}-\mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=2000 \mathrm{lbs}$.
(b) Methods.-(1) Algebraic Moments: To calculate the stresses in the diagonal members take center of moments about the point $A$, the point of intersection of the inclined posts. Then to calculate stress in $\mathrm{I}-2$, take section cutting $\mathrm{I}-2, \mathrm{I}-X$ and $2-Y$; assume the external force as acting from the outside toward the cut section, and we have $\mathrm{I}-2 \times 15.9+3000 \times 19.3=0$ and $\mathrm{I}-2=-3640 \mathrm{lbs}$. Stresses in 3-4, $5-6,2-3,4-5$ and $6-X$ are found in a similar manner. To obtain reaction $R_{1}$ take moments about (h), and $R_{1} \times 30+2000 \times 15+2000 \times$ $30+3000 \times 45=0$ and $R_{1}=+7500 \mathrm{lbs}=-R_{2}$. To calculate stresses in $2-Y, 4-Y$ and $6-Y$, take moments about (b), (c) and (d), respectively. To calculate stresses in $3-X$ and $5-X$, take moments about (f) and (g), respectively. (2) Graphic Resolution: The loads $P_{1}, P_{2}, P_{3}$ and $P_{4}$ are laid off horizontally as shown, and with load $P_{1}$ at (c) the stress triangle $Y-2-4$ is drawn. The remainder of the solution can be easily followed.
(c) Results.-For the reason that the wind may blow from the opposite direction, both sets of stresses must be considered in designing each leg.

Problem 22a. Wind Load Stresses in a Trestle Bent.
(a) Problem.-Given a trestle bent, height $45^{\prime}-0^{\prime \prime}$, width at the base $30^{\prime}-0^{\prime \prime}$, width at the top $9^{\prime}-0^{\prime \prime}$, wind loads $P_{1}, P_{2}, P_{3}, P_{4}$, as shown, and $P_{0}=3000 \mathrm{lbs}$. acting $8^{\prime}-0^{\prime \prime}$ above top of trestle. Calculate the stresses in the members of the bent due to wind loads by algebraic moments and check by calculating the stresses by graphic resolution. Assume the diagonal members to be tension members, and that the dotted members shown are not acting. In solving the stresses by graphic resolution continue the posts up to the line of $P_{0}$ and substitute an auxiliary panel to transfer $P_{0}$ to the bent. Scale of truss, $\mathrm{r}^{\prime \prime}=$ $10^{\prime}-\mathrm{O}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.


Problem 23. Stresses in the Portal of a Bridge by Algebraic Moments and Graphic Resolution.
(a) Problem.-Given the portal of a bridge of the type shown, inclined height $30^{\prime} \mathrm{o}^{\prime \prime}$, center to center width $15^{\prime} \mathrm{o}^{\prime \prime}$, load $R=2,000$ lbs., end-posts pin-connected at the base. Calculate the stresses by algebraic moments and check by graphic resolution. Scales as shown.
(b) Methods.-Now $H=H^{\prime}=1,000 \mathrm{lbs} . \quad V=-V^{\prime}$, and by taking moments about $B, V=30 \times 2,000 / 15=4,000 \mathrm{lbs} .=-V^{\prime}$.
'Algebraic Moments.-In passing sections, care should be used to avoid cutting the end-posts for the reason that these members are subject to bending stresses in addition to the direct stresses. To calcu1late the stress in member $3-Y$ take the center of moments at joint (i) and pass a section cutting members $4-b, 3-4$ and $3-Y$, and cutting the portal away to the left of the section. Then assumes stress $3-Y$ as an external force acting from the outside toward the cut section, and $3-Y$ $\times$ 1о $\times 0.447(\sin \theta)+H \times 30^{\prime}=0$. The stress in $3-Y=-6,7$ 1о lis. The remaining stresses are calculated as shown.

Graphic Resolution.-Lay off $a-A=A-b=H=\mathrm{I}, 000 \mathrm{lbs}$., and $A-Y=V^{\prime}=4,000 \mathrm{lbs}$. Then beginning at point $B$ in the portal the force polygon for equilibrium is $a-A-Y-I^{\prime}-a$, in which $\mathrm{I}^{\prime}-a$ is the stress in the auxiliary member $I-a$, and $Y-I^{\prime}$ is the stress in the post $\mathrm{I}-Y$ when the auxiliary member is acting. The true stress in $\mathrm{I}-Y$ is equal to the algebraic sum of the vertical components of the stress $I^{\prime}-a$ and $Y-I^{\prime}$, and equals $V^{\prime}=-4,000 \mathrm{lbs}$. Next complete the force triangle at the intersection of the auxiliary members. Stress $I^{\prime}-a$ is known and the force triangle is $a-\mathrm{I}^{\prime}-2^{\prime}-a$, the forces acting as shown. The stress diagram is carried through in the order shown, checking up at the point $A$. The correct stresses are shown by the full lines in the stress diagram. The true stress in 3-2 will produce equilibrium for vertical stresses at joint (I) as shown. The maximum shear in the posts is $H=1,000 \mathrm{lbs}$. The maximum bending moment in the posts will occur at the foot of the member $3-Y$, joint (3), and is $M=\mathrm{I}, 000 \times 20 \times 12=240,000 \mathrm{in} .-1 \mathrm{bs}$.
(c) Results.-The method of graphic resolution requires less work and is more simple than the method of algebraic moments.

Note: The portal is not pin-connected at joints (3) and the corresponding joint on the opposite side, as might be inferred from the figure.


Problem 23a. Stresses in the Portal of a Bridge by Algebraic Moments and Graphic Resolution.
(a) Problem.-Given the portal shown in Problem 23, except that the posts are fixed at their bases. Calculate the stresses by algebraic moments and check by graphic resolution. Assume the point of contraflexure as half way between the base of the post and the foot of the knee brace. Scales as in Problem 23.

## Problem 24. Wind Load Stresses in a Transverse Bent by Graphic Resolution.

(a) Problem.-Given a transverse bent, span $40^{\prime} 0,{ }^{\prime \prime}$ pitch of roof $\frac{1}{4}$, height of posts $20^{\prime} 0^{\prime \prime}$, posts pin-connected at the base, wind load 20 lbs. per square foot of vertical projection. Calculate the wind load stresses in the bent by graphic resolution. Scale of bent, $\mathrm{I}^{\prime \prime}=10^{\prime} \mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3,000 \mathrm{lbs}$.
(b) Methods.-Now $H=\frac{1}{2} \Sigma P=4,500 \mathrm{lbs} .=H^{\prime}$. To calculate $V$ take moments about the foot of the right-hand post, and $V \times 40^{\prime}-$ $3,000 \times 13^{1^{\prime}}-1,750 \times 20^{\prime}-1,500 \times 25^{\prime}-750 \times 30^{\prime}=0$. Then V. $=+3,375 \mathrm{lbs} .=-V^{\prime}$.

To construct the stress diagram lay off the load line $P_{1}+P_{2}+P_{3}$ $+P_{4}+P_{5}$, and $\mathrm{I}-Y=V=3,375 \mathrm{lbs}$. Beginning at the foot of the windward post, $V$ acts downward, $H=X-1$ acts to the left, $P_{5}$ acts to the right. The polygon is closed by drawing lines parallel to $\mathrm{I}-X$ and $\mathrm{I}-Y$, the final stress polygon being $Y-\mathrm{I}-X-X-\mathrm{I}^{\prime}$. Then pass to the load $P_{4}$ in the transverse bent, and in the stress diagram $P_{4}$ acts to the right, $\mathrm{I}-X$ acts upwards to the left, $\mathrm{I}-2$ acts to the right, and $2-X$ acts downwards to the left, closing the polygon. The remainder of the stress diagram is drawn in a similar manner, passing to the foot of the knee brace, then to the top of the post, etc., finally checking up at the foot of the leeward post. The maximum shear is in the leeward post, below the knee brace the shear is $H=4,500 \mathrm{lbs}$., above the knee brace the shear is the horizontal component of the stress in io- $X$ $=1 \mathrm{o}^{\prime}-X=9,000 \mathrm{lbs}$. The maximum bending moment in the post is at the foot of the leeward knee brace and is $M=4,500 \times \mathrm{I} 3 \frac{1}{3}=60,000$ ft.-lbs. For further explanation see the author's "The Design of Steel Mill Buildings."
(c) Results.-The stresses in the members do not follow the usual rules for trusses loaded with vertical loads; the top chord is partly in tension and partly in compression, while the bottom chord is in compression. The bent should be designed for the wind load stresses combined with the dead load and the minimum snow load stresses, for the wind load and the dead load stresses, or for the wind load and the dead load stresses, whichever combination produces maximum stresses or reversals of stresses.

The stresses in the posts are calculated by dropping the points 1,2 , Io and II to the points $\mathrm{I}^{\prime}, 2^{\prime}, \mathrm{IO}$ and $\mathrm{II}^{\prime}$, respectively, on the load line, or on load line produced. The stresses in the windward post are $\mathrm{I}^{\prime}-Y$ and $2^{\prime}-3$, while the stresses in the leeward post are $11^{\prime}-Y$ and $9-10^{\prime}$. The maximum shear in the leeward post is above the knee brace and is $1 \mathrm{o}^{\prime}-X=9,000 \mathrm{lbs}$.


Problem 24a. Wind Load Stresses in a Transverse Bent by Graphic Resolution.
(a) Problem.-Given a transverse bent, span $40^{\prime} 0^{\prime \prime}$, pitch of roof $\frac{1}{4}$, height of posts $20^{\prime} \mathrm{o}^{\prime \prime}$, posts pin-connected at the base, wind load 20 lbs. per square foot normal to the sides and the normal component of a horizontal wind load of 30 lbs . per square foot on the roof. (The normal load on the roof for a horizontal wind load of 30 lbs . is $22 \frac{1}{2} \mathrm{lbs}$. per sq. ft., see "Steel Mill Buildings.") Calculate the wind load stresses in the transverse bent by graphic resolution. Scale of bent, $\mathrm{I}^{\prime \prime}=\mathrm{IO}^{\prime} \mathrm{o}^{\prime \prime}$. Scale of loads, $\mathrm{I}^{\prime \prime}=3000 \mathrm{lbs}$.

## INDEX.

Algebraic calculation of stresses-see Stresses.
Allowable sections ..... 329
Anchorage of columns ..... 115
Anti-condensation roofing ..... 241
Arch-see Two-hinged and three-hinged arches.
Asbestos roofing ..... 258
Asphalt paint ..... 339
Asphalt roofing ..... 257
A. T. \& S. F. Locomotive Shops ..... 367
Beams, Graphic Methods for calcula-ting the deflection of158
Bearing power of piles ..... 273
Bearing power of soils ..... 272
Bending moment in beams, 33, 56, 57, 5 ..... 59
Boyer plant ..... 185
Bracing ..... 92
Brick arch floors ..... 290
Brick floors ..... 290
Bridge trusses, stresses in Camel Back ..... 72
Pratt ..... 69
Warren ..... 67
Also, see Stresses.
Brown \& Sharpe foundry ..... 184
" Buckeye" flooring ..... 294
Buckled plates ..... 296
Carbon paint ..... 333
Carey's roofing ..... 259
Center of gravity ..... 34
Cement floors ..... 282
Choice of sections ..... 328
Circular ventilators ..... 320
Cleaning the surface of steel ..... 336
Coal-tar paint ..... 339
Columns
Design of ..... 217
Details ...205, 206, 207, 208, 209, ..... 380
Pressure on masonry ..... 278
Types of ..... 203
Combined stresses ..... 143
Compression and cross bending ..... 145
Tension and cross bending ..... 148
Stress in bars due to weight ..... 149
Diagram for stress in bars due to weight ..... 149
Concentrated moving loads ..... 61
Concentrated load shear ..... 56
Concentrated load stresses ..... 53
Concrete buildings ..... 268
Concrete slabs ..... 266
Conkey printing plant ..... 184
Continuous beams ..... 164
Corrosion of steel ..... 330
Corrugated floor ..... 295
Corrugated steel
Anti-condensation lining ..... 241
Corner finish ..... 234
Cornice ..... 237-241
Cost of ..... 244
Details ..... 232
Diagram for safe loads ..... 230
Flashing ..... 233
Fastening ..... 22;
Gutters and Conductors ..... 234
Design of ..... 235
Plans ..... 244
Plans for transformer ..... 243
Roofing ..... 246
Rotary shear for cutting ..... 227
Ridge roll ..... 232
Standard sheets ..... 226
Steel lists for transformer build- ing ..... 243
Strength of ..... 230
Tests of ..... 231
Weight of ..... 8, 225
Cost-see estimate of cost, and cost under different items.
Estimate of ..... 346, 349
Of miscellaneous materials ..... 355
Standard hardware lists ..... 357
Of material ..... 351
Of mill details and shop work ..... 353
Crane girders ..... 224
Details of ..... 380, 382
Deflection of beams ..... 158
Deformation diagram ..... 134
Design-see Article for which design is wanted.Details-see Article for which detailsare wanted.
Diagram for stress in bars due totheir own weight149
Diffusion of light ..... 299
Doors
Paneled ..... 322
Wooden ..... 322
Sandwich ..... 323
Steel ..... 323
Details for ..... 325
Cost of ..... 325
Draw bridges, reactions of ..... 169
Fastening corrugated steel ..... 227
Ferroinclave ..... 295
Finishing coat of paint ..... 338
Floors ..... 28r
Brick ..... 284
Brick arch ..... 290
Buckled plates ..... 296
"Buckeye" fireproof ..... 294
Cement ..... 282
Corrugated ..... 295
Corrugated iron arch ..... 291
Expanded metal ..... 292
Ferroinclave ..... 295
Roebling ..... 293
Multiplex steel ..... 295
Steel plates ..... 296
Tar concrete ..... 284
Wooden ..... 282
Floor beam reaction, Maximum ..... 81
Foundations
Bearing power of piles ..... 273
Bearing power of soils ..... 272
Design of footings ..... 278
Pressure of walls on foundation ..... 275
Pressure of pier on foundation ..... 276
Pressure of column on masonry ..... 278
Girders, crane ..... 224
Girders, design of ..... 221
Glass
Amount of light required ..... 310
Cost of ..... 304
Details of windows ..... 307
Diffusion of light ..... 299
Double glazing ..... 307
Kinds of ..... 298
Factory ribbed ..... 299
Maze ..... 299
Plane ..... 298
Plate ..... 298
Prisms ..... 299
Ribbed ..... 299
Wire ..... 299
Window ..... 298
Relative value of different kinds ..... 299
Placing the glass ..... 302
Size of ..... 304
Window shades ..... 303
Government Building, St. Louis Ex- position ..... 385
Granite roofing ..... 259
Graphic equation of elastic curve ..... 158
Gravel roofing ..... 254
Ground floors ..... 281
Hardware lists ..... 357, 358
Influence diagram ..... 77
Iron oxide ..... 333
Iron, classificaltion ..... 352
Iron, corrugated-see Corrugatedsteel.
Lead ..... 331
Linseed oil ..... 331
Lists, standard hardware ..... 357, 358
Loads
Dead loads ..... 4
Weight of covering ..... 8
Weight of cranes ..... 18
Weight of girts ..... 8
Miscellaneous material ..... 19
Weight of purlins ..... 8
Weight of structure ..... 9
Loads on simple roof trusses ..... 47
Concentrated live loads ..... 21
Snow loads ..... 10
Wind loads ..... 12
Miscellaneous loads ..... 17
Live loads on floors ..... 17
Locomotive shops
A. T. \& S. F. ..... 197, 367
Oregon Short Line ..... 195
Philadelphia \& Reading ..... 372
St. L. I. M. \& S. ..... 196
Union Pacific ..... 196
Methods of calculations
Algebraic moments ..... 44, 72
Algebraic resolution ..... 40, 65
Graphic moments ..... 46, 73
Graphic resolution ..... 42, 70
Also-see Stresses.
Mill buildings
General design of ..... 175
Specifications for ..... 391
Types ..... 1
Masonry walls ..... 3
Masonry filled walls ..... 2
Steel frame ..... I
Miscellaneous loads
Live loads on floors ..... 17
Weight of electric cranes ..... 18
Weight of hand cranes ..... 18
Weight of miscellaneous material ..... 19
Miscellaneous structures
A. T. \& S. F. shops ..... 197, 367
Government Building, St. Louis
385
Exposition
Philadelphia \& Reading shops ..... 372
Reinforced concrete round-house for Canadian Pacific R. R. ..... 388
St. Louis Coliseum ..... 362
Steam Engineering Buildings Brooklyn Navy Yard ..... 38I
Steel Dome West Baden Hotel ..... 359
Mixing paint ..... 334
Modified saw-tooth roof ..... 186
Moment of inertia of areas ..... 38
Moment of inertia of forces ..... 35
Culmann's method ..... 35
Mohr's method ..... 36
Moments
Algebraic ..... 2
Graphic ..... 73
Moments in beams
Concentrated loads ..... 56
Concentrated moving loads ..... 59
Maximum moment in a truss ..... 77
Uniform loads ..... 57
Uniform moving loads ..... 59
Monitor ventilators ..... 317
Moose Jaw Round-house ..... 388
Multiplex steel floor ..... 295
Oil, linseed ..... 331
Oil, paint ..... 330
Paint
Applying the ..... 335
Asphalt ..... 339
Carbon ..... 333
Cement paint ..... 339
Cleaning the surface ..... 336
Coal-tar paint ..... 339
Cost of ..... 336
Covering capacity ..... 334
Finishing coat ..... 338
Iron oxide ..... 333
Lead ..... 332
Linseed oil ..... 33 I
Mixing the ..... 334
Oil paints ..... 330
Priming coat ..... 337
Proportions ..... 334
References on paint ..... 340
Zinc ..... 333

## Index

Painting
Applying the paint ..... 335
Cost of ..... 337
Cleaning the surface ..... 336
Paneled doors ..... 322
Philadelphia \& Reading shops ..... 372
Pins, stresses in ..... 154
Pitch of roof ..... 191
Pitch of trusses ..... 192
Plate girders ..... 221
Polygon
Equilibrium ..... 26
Force ..... 24
Moment 56, 57, 59, 61, 73
Shear 56, 57, 59, 61, 74
Portals
Anchorage of columns ..... 115
Stresses in
Continuous portals ..... 117
Double portal ..... II8
Simple portals, columns hinged
Algebraic solution 110, 11
Graphic solution ..... 112
Simple portals, columns fixed
Algebraic solution ..... II 5
Graphic solution ..... II7
Portland cement paint ..... 339
Pressure of columns on masonry ..... 278
Pressure of pier on foundation ..... 275
Pressure of wall on foundation ..... 276
Proportions of paint and oil ..... 334
Purlins ..... 213
Reactions of
Beams ..... 29, 55
Cantilever truss ..... 30
Draw bridges ..... 159
Overhanging beam ..... 55
Three-hinged arch ..... 121
Transverse bent ..... 103
Two-hinged arch ..... 128, I31, 133
Resolution
Algebraic ..... 40, 65
Graphic ..... 2, 70
Red lead ..... 332
Reinforced round-house ..... 388
References on paint and painting ... 340
Roebling floor ..... 293
Roof, pitch of ..... 191
Roof trusses-see Trusses.
Stress in-see Stresses.
Roof coverings for railway buildings. 261
Roofing,
Asbestos ..... 185, 258
Asphalt ..... 257
Carey's ..... 259
Corrugated steel ..... 246
Cost of ..... 246, 262
Examples of ..... 261
Ferroinclave ..... 260
Granite ..... 259, 262
Gravel ..... 254, 262
Paroid ..... 262
Ruberoid ..... 259, 262
Slag ..... 256, 375
Sheet steel ..... 253, 262
Slate ..... 247, 262
Sparham ..... 261, 262
Tile ..... 262
Round-house ..... 388
Ruberoid roofing ..... 259
Saw-tooth roofs. $177,183,184,185,186$,187, 188, 189, 190, 202, 368, 369
Boyer plant ..... 185
Brown \& Sharpe foundry ..... 184
Conkey printing plant ..... 184
Ingersoll-Sargent Drill Co. ..... 187
Ketchum's modified ..... I86
Locomotive shop ..... 190
Louisville \& Nashville R. R. shops, ..... 187
Matthiessen \& Hegeler shops ..... 202
P. \& L. E. R. R. shop ..... 188
Sections, choice of ..... 328
Shear in beams, for Concentrated loads ..... 56
Concentrated moving loads ..... 61
Maximum shear in a truss ..... 79
Uniform moving loads ..... 59
Shear polygon-see Polygon.
Sheet steel roofing ..... 253
Shingle roofs ..... 258
Shop cost ..... 353
Shop costs, actual ..... 355
Side walls
Concrete slabs ..... 266
Corrugated steel ..... 263
Expanded metal and plaster ..... 263
Masonry walls ..... 267
Thickness of ..... 267
Skylights ..... 303
Details of ..... 307
Slate roofing ..... 247
Slag roofing ..... 375
Snow loads ..... 10
Sparham roofing ..... 261
Specifications for Steel Frame Mill Buildings-Appendix I. ..... 391
Standard hardware lists ..... 357, 358
Steam engineering buildings forBrooklyn Navy Yard381
Stress in bars due to weight ..... 149
Stresses, allowable ..... 214
Also-see Appendix I. ..... 391
Stresses in
Bracing ..... 92
Bridge trusses-see Trusses,
Portals-see Portals.
Roof trusses-see Roof trusses.
Transverse bent-see Transversebent.Three-hinged arch-see Three-hinged arch.
Two-hinged arch-see Two-hinged arch.
Stresses
Calculation of ..... 22
Combined ..... 144
Eccentric ..... 152
Struts and bracing ..... 213
Tar concrete floors ..... 284
Three-hinged arch
Calculation of stresses ..... 120
Dead load ..... 122
Reactions
Algebraic method ..... 120
Graphic method ..... 121
Wind load stresses ..... 125
Timber floors ..... 285, 290
Tile roofing ..... 250
Tin roofs ..... 251
Translucent ${ }^{\bullet}$ fabric ..... 306
Cost of ..... 307
Transverse bent
Details200, 202
Transverse bent, stresses in83, 94
Maximum ..... 91, 101
Snow load ..... 83
Wind load
Algebraic calculation ..... 84
Columns fixed ..... 87
Columns hinged ..... 84, 168
Graphic calculation
Case 2 ..... 96
Case 3 ..... 98
Case 4 ..... 99
Case 5 ..... 104
Graphic calculation of reactions, 103
Transverse bent with side sheds ..... 105
Transverse bent with ventilator ..... 103
Trusses
Economic spacing of ..... 192
Design of ..... 214
Details of ..... 378
Pitch of ..... 190
Saw-tooth-see Saw-tooth roofs.Types180, 190
Trusses, stresses
Bridge trusses
Algebraic moments ..... 72
Algebraic resolution ..... 65
Graphic moments ..... 73
Graphic resolution ..... 70
Roof trusses
Algebraic moments ..... 44
Algebraic resolution ..... 40
Graphic moments ..... 46
Graphic resolution ..... 42
Concentrated load ..... 53
Dead load ..... 47
Dead and ceiling load ..... 48
Snow load ..... 49
Wind load ..... 49, 50, 51
Two-hinged arch141
Two-hinged arch, stresses

## Index

Calculation of reactions ..... 128 ..... 341
Algebraic solution131 Weight of building materials
Graphic solution 133 Weight of merchandise20Dead load135
Dead and wind load ..... 13
Temperature stresses ..... 140
With horizontal tie. ..... 139
Ventilators ..... 317
Monitor ..... 317
Cost of ..... 320
Circular ..... 320
Cost of ..... 321
Walls, masonry ..... 267
Walls, side ..... 263

## APPENDIX III

## STRUCTURAL DRAWINGS, ESTIMATES AND DESIGNS.

## PREFACE.

The aim in preparing these notes has been to give simple and direct instructions for preparing structural drawings, estimates and designs. While most bridge companies furnish their draftsmen with similar information, the notes are usually prepared in blue print form and are not available for the use of the student and independent engineer.

In preparing these notes the instructions of many bridge companies have been consulted; special credit being due the instructions prepared by the American Bridge Company, the McClintic-Marshall Construction Company, and the Pennsylvania Steel Company.

## TABLE OF CONTENTS.

## Chapter I. <br> Page

2 to 3

## Chapter II.

Structural Drawings ..... 3 to 32
Methods-Rules for Shop Drawings-Plate Girder Bridges-
Truss Bridges-Office Buildings and Steel Frame Buildings- Detail Notes-Rules for Ordering Material-Plates and Shapes Most Easily Obtained.
Chapter III.
Estimates of Structural Steel
General Instructions-Mill Buildings-Office Buildings-Truss Bridges-Taking off Material-Card of Mill Extras-Corru- gated Steel.
Chapter IV.
Design of Steel Structures ..... 44 to 48
General Instructions-Mill Buildings-Plate Girders-Truss Bridges.
Chapter V.
Tables and Structural Standards ..... 48 to 78

## CHAPTER I.

## Plans for Structures.

Introduction.-The plans for a structure must contain all the information necessary for the design of the structure, for ordering the material, for fabricating the structure in the shop, for erecting the structure, and for making a complete estimate of the material used in the structure. Every complete set of plans for a structure must contain the following information, in so far as the different items apply to the particular structure.
r. General Plan.-This will include a profile of the ground; location of the structure; elevations of ruling points in the structure; clearances; grades; (for a bridge) direction of flow, high water, and low water; and all other data necessary for designing the substructure and superstructure.
2. Stress Diagram.-This will give the main dimensions of the structure, the loading, stresses in all members for the dead loads, live loads, wind loads, etc., itemized separately; the total maximum stresses and minimum stresses; sizes of members; typical sections of all built members showing arrangement of material, and all information necessary for the detailing of the various parts of the structure.
3. Shop Drawings.-Shop detail drawings should be made for all steel and iron work and detail drawings of all timber, masonry and concrete work.
4. Foundation or Masonry Plan.-The foundation or masonry plan should contain detail drawings of all foundations, walls, piers, etc., that support the structure. The plans should show the loads on the foundations; the depths of footings; the spacing of piles where used; the proportions for the concrete; the quality of masonry and mortar; the allowable bearing on the soil; and all data necessary for accurately locating and constructing the foundations.
5. Erection Diagram.-The erection diagram should show the relative location of every part of the structure; shipping marks for the various members; all main dimensions; number of pieces in a member; packing of pins; size and grip of pins, and any special feature or information that may assist the erector in the field. The approximate weight of heavy pieces will materially assist the erector in designing his falsework and derricks.
6. Falsework Plans.-For ordinary structures it is not common to prepare falsework plans in the office, this important detail being left to the erector in the field. For difficult or important work erection plans should be worked out in the office, and should show in detail all members and connections of the falsework, and also give instructions for the successive steps in carrying out the work. Falsework plans are especially important for concrete and masonry
arches and other concrete structures, and for forms for all walls, piers, etc. Detail plans of travelers, derricks, etc., should also be furnished the erector.
7. Bills of Material.-Complete bills of material showing the different parts of the structure with its mark, and the shipping weight should be prepared. This is necessary in checking up the material to see that it has all been shipped or received, and to check the shipping weight.
8. Rivet List.-The rivet list should show the dimensions and number of all field rivets, field bolts, spikes, etc., used in the erection of the structure.
9. List of Drawings.-A list should be made showing the contents of all drawings belonging to the structure.

## CHAPTER II.

## Structural Drawings.

METHODS.-The drawings for structural steel work differ from the drawings for machinery in that ( $a$ ) two scales are used, one for the length of the member or the skeleton of the structure, and one for the details; (b) members are commonly shown by one projection; and (c) the drawings are not to exact scale, all distances being governed by figures.

Two methods are used in making shop drawings.
(i) The first method is to make the drawings so complete that the templets can be made for each individual piece on the bench. This method is used for all large trusses and members, and where there is not room to lay the member out on the templet shop floor. The details for the joint of a Fink roof truss completely detailed are shown in Fig. r. A joint of a roof truss of the locomotive shop of the A. T. \& S. F. R. R., at Topeka, Kansas is completely detailed in Fig. 2.
(2) The second method is to give on the drawings only sufficient dimensions to locate the position of each member, the number of rivets, and the sizes of members, leaving the details to be worked out by the templet maker on the laying-out floor. Sufficient data should be given to definitely locate the main laying-out points. The interior pieces should be located by center lines corresponding to the gage lines of the angles, or center line of the piece, as the case may be. The rivet spacing should be given complete for members detailed on different sheets, or where it is necessary to obtain a required clearance, and other places where it will materially assist the templet maker. The drawings should indicate the number and arrangement of the rivets in each connection, as well as the maximum, the usual and the minimum rivet pitch allowed. Sketch details of the joint which was completely detailed in Fig. I are shown in Fig. 3, and the outline details of a roof truss by the second method are shown in Fig. 4.

Members may be detailed in the position which they are to occupy, or they may be detailed separately. For riveted trusses and riveted members the


Fig. I. Truss Joint, Completely Detailed.
entire truss or member should be detailed in position. The detail shop plans for a riveted brace are shown in Fig. 5. The field rivets are shown by black and the shop rivets by open circles. The center lines are indicated by dotted lines. Light full black lines are commonly used for dimension lines, while red dimension lines are sometimes used but do not make as good blue prints as black lines.

## Rules for Shop Drawings.

The following rules are essentially those in use by the best bridge and structural shops.

Size of Sheet.-The standard size of sheet shall be $24 \times 36 \mathrm{in}$. with two border lines $1 / 2$ and I in. from the edge respectively, see Fig. 6. Sheets $18 \times 24$ in. with two border lines $1 / 2$ and $I$ in. from the edge respectively, may also be used. For beam sheets, bills of material, etc., use letter size sheets $8 \mathrm{t} / 2 \times$ II in.

Title.-The title shall be arranged uniformly for each contract and shall be placed in the lower right hand corner. The title shall contain the name of the job, the description of the details on the sheet, the number of the sheet, spaces for approval and other information as shown in Fig. 6.


Fig. 2. Joint of Roof Truss Completely Detailed. (Section of Shop Details of Roof Truss.)

Scale.-The scale of the lengths of the members or skeleton of the structure shall be $1 / 4$, or $3 / 8$, or $1 / 2$ in. to 1 ft ., depending upon the available space and the complexity of the member or structure. Shop details shall as a rule be made $3 / 4$ or $I$ in. to $I \mathrm{ft}$. For small details $\mathrm{I} 1 / 2$ and 3 in . to I ft . may be used; while for large plate girders $1 / 2$ or $5 / 8 \mathrm{in}$. to I ft. may be used.

Views Shown.-Drawings shall be neatly and carefully made to scale. Members shall be detailed in the position which they will occupy in the structure; horizontal members being shown lengthwise, and vertical members crosswise on the sheet. Inclined members (and vertical members when necessary


Fig. 3. Truss Joint, Sketch Detailed.
on account of space) may be shown lengthwise on the sheet, but then only with the lower end on the left. Avoid notes as far as possible; where there is the least chance for ambiguity, make another view.

In truss and girder spans, draw the inside view of the far truss, left hand end, Fig. 7. The piece thus shown will be the right hand, and need not be marked right. In cases where it is necessary to show the left hand of a piece, mark "left-hand shown" alongside the shipping mark.

Show all elevations, sections and views in their proper position, looking toward the member. Place the top view directly above, and the bottom view directly below the elevation. The bottom view should always consist of a horizontal section as seen from above.

In sectional views, the web (or gusset plate) shall always be blackened; angles, fillers, etc., may be blackened or cross-hatched, but only when necessary on account of clearness. In a plate girder, for example, it is not necessary to blacken or cross-hatch all the fillers and stiffeners in the bottom view.

Holes for field connections shall always be blackened, and shall, as a rule,
be shown in all elevations and sectional views. Rivet heads shall be shown only where necessary ; for example, at the ends of members, around field connections,

when countersunk, flattened, etc. In detailing members which adjoin or connect to others in the structure, part of the latter shall be shown in dotted lines, or in red, sufficiently to indicate the clearance required or the nature of the connection. Plain building work is exempted from this rule.


Fig. 5. Shop Details of Brace.

A diagram to a small scale, showing the relative position of the member in the structure, shall appear on every sheet, Fig. 8 and Fig. 9. The members detailed on the sheet shall be shown by heavy black lines, the remainder of the structure in light black lines. Plain building work is exempt from this rule.

When part of one member is detailed the same as another member, figures for rivet spacing need not be repeated; refer to previous sheet or sheets, bearing in mind that these must contain final information. It is not permissible to refer to a sheet, which in turn refers to another sheet. The section, finished length, and the assembling mark for each member shall be shown on every sheet. Main dimensions which are necessary for checking, such as c. to c. distances, story heights, etc., shall be repeated from sheet to sheet. Holes for field connections must always be located independently, even if figured in connection with shop rivets; they shall be repeated from sheet to sheet unless they are standard, in which case they shall be identified by a mark and the sheet given on which they are detailed.

The quality of material, workmanship, size of rivets, etc., shall be specified on every sheet as far as it refers to the sheet itself. Standard workmanship need not be specified on each sheet.

Lettering.-Engineering News lettering as developed by Reinhardt in his book on freehand lettering shall be used on all drawings. Preferably main titles and sub-titles shall be vertical and the remainder of the lettering inclined. The height of letters shall be as follows: Main titles-capitals $15 / 50^{\prime \prime}$, small capitals $12 / 50^{\prime \prime}$; sub-titles-capitals, full height lower case letters and numerals $5 / 20^{\prime \prime}$, lower case letters $3 / 20^{\prime \prime}$; other lettering-capitals, full height lower case letters and numerals $5 / 30^{\prime \prime}$, lower case letters $3 / 30^{\prime \prime}$. Where the drawing is crowded the body of the lettering may be $5 / 40^{\prime \prime}$ and $3 / 40^{\prime \prime}$ respectively. The following pens are recommended: For titles Leonardt \& Co.'s Ball-Pointed


Fig. 6. Standard Sheet and Title for Structural Drawings.

No. 516F; for all other lettering Hunt Pen Co.'s extra fine Shot Point, No. 512. No pen finer than Gillott's No. 303 should be used. Light pencil guide lines shall be drawn for all lettering. All tracings shall be made on the dull side of the tracing cloth. Erasures shall be made with soft rubber pencil eraser and a metal shield. Rubber erasers containing sand destroy the surface of the cloth and make it difficult to ink over the erased spot. The use of knives or tel erasers will not be permitted. Tracings shall be cleaned with a very soft rubber eraser, and not with gasolene or benzine, which destroy the finish of the tracing cloth. All lines shall preferably be made with black India ink; full lines to represent members, dash and dot to represent center lines, and dotted lines (or full light black lines) to represent dimension lines. If permitted



by the chief draftsman red ink may be used for dimension and center lines. The ends of dimension lines shall, however, always be indicated by arrows made with black ink.

Conventional Signs. Conventional signs for rivets are shown in Fig. Io. Countersunk rivets project $1 / 8 \mathrm{in}$.; if less height of rivets is required, drawings


Fig. io. Conventional Signs for Rivets.
shall specify that they are to be chipped, or the maximum projection may be specified. Flattened heads project $3 / 8 \mathrm{in}$. to $7 / 16 \mathrm{in}$.; if less height of heads is required, they shall be countersunk. Metals in section shall be shown as in Fig. II.

Marking System.-A shipping mark shall be given to each member in the structure, and no dissimilar pieces shall have the same mark. The marks shall consist of capital letters and numerals, or numerals only; no small letters shall be used except when sub-marking becomes absolutely necessary. The letters $R$ and $L$ shall be used only to designate "right" and "left." Never use the word "marked" in abbreviated form in front of the letter, for example say, 3 Floorbeams G4, and not, 3 Floorbeams, Mk. G4. Whenever a structure is divided up into different contracts care should be taken not to duplicate ship-


Fig. ii. Conventional Signs for Metals.
ping marks. Pieces which are to be shipped bolted on a member shall also have a separate mark, in order to identify them should they for some reason or another become detached from the main member. The plans shall specify which pieces are to be bolted on for shipment, and the necessary bolts shall be billed. For standard marking system for a truss bridge, see Fig. 7.

A system of assembling marks shall be established for all small pieces in a structure which repeat themselves in great numbers. These marks shall consist of small letters and numerals or numerals only; no capital letters shall be used; avoid prime and sub-marks, such as $M_{a}{ }^{\prime}$. Pieces that have the same assembling mark must be alike in every respect; same section, length, cutting and punching, etc.

Shop Bills.-Shop bills shall be written on special forms provided for the purpose. When the bills appear on the drawings as well, they shall either be placed close to the member to which they belong or on the right hand side of the sheet. When the drawings do not contain any shop bills, these shall be so written that each sheet can have its bill attached to it if desired; one page of shop bills shall not contain bills for two sheets of drawings. In large structures which are sub-divided into shipments of suitable size, both mill and shop bills must be written separately for each shipment. In writing the shop bill bear in mind that it shall serve as a guide for the laying out and assembling of the member, besides being a list of the material required. For this reason members which are radically different as to material shall not be bunched in the same shop bill, neither shall pieces which have different marks be bunched in the same item, even if the material is the same. Bill first the main material in the member, and follow with the smaller pieces, beginning at the left end of a
girder, or at the bottom of a post or girder. On a column each different bracket shall be billed complete by itself. Do not bill first all the angles and then all the flats; for example when the end stiffeners in a girder are billed, the fillers belonging to them shall follow immediately after the angles, and so on.

When machine-finished surfaces are required, the drawing and the shop bill shall specify the finished width and length of the piece, the proper allowance for shearing and planing being made in the mill bill. When the metal is to be planed as to thickness, the drawing and the shop bill shall specify both the ordered and the finished thickness; one pl. $15^{\prime \prime} \times 3 / 4^{\prime \prime} \times \mathrm{I}^{\prime} 6^{\prime \prime}$ (planed from $13 / 16^{\prime \prime}$ ).

Field bolts shall be billed on "bill of rivets and bolts" only. Bill them Similarly to field rivets, and give the drawing number on which they are shown; 4-bolts $7 / 8^{\prime \prime} \times 2$ " grip, $3^{\prime \prime}$ U.H., stringers "S" to floor beam "F" drawing No. 13, 4 hex. (or 4 square) nuts for above bolts. Bill of bolts and bill of field rivets shall be prepared and placed in the shop in time to be made with other material.

Erection Plan.-Make erection plans simultaneously with the shop plans, and keep same up to date. The erection plans must show plainly the style of connections; joints in pin spans are to be shown separately to a larger scale: For the erection plan of a truss bridge see Fig. 7. Shipping bills showing the number of pieces, erection mark, and weight shall be made for each shipment.

Sub-Divisions.-Every contract embracing different classes of work shall have a subdivision for each class. These sub-divisions will be furnished by the chief draftsman. Drawings, shop and shipping bills must be kept separate for each class.

PLATE GIRDER BRIDGES.-General Rules.-The plate girder span shall be laid out with regard to the location of web splices, stiffeners, cover plates, and in a through span, floorbeams and stringers, so that the material can be ordered at once. Locate splices and stiffeners with a view of keeping the rivet spacing as regular as possible; put small fractions at the end of girder. Stiffeners, to which cross-frames or floorbeams connect, must not be crimped, but shall always have fillers. The outstanding leg shall not be less than $4^{\prime \prime}$, gaged $23 / 4^{\prime \prime}$; this will enable cross-frames or floorbeams to be swung in place without spreading the girders. The second pair of stiffeners at the end of girder over the bed-plate shall be placed so that the plate will project not less than $I^{\prime \prime}$ beyond the stiffeners.

Always endeavor to use as few sizes as possible for stiffeners, connection plates, etc., and avoid all unnecessary cutting of plates and angles. For this purpose locate end holes for laterals and diagonals so that the members can be sheared in a single operation. In spans on a grade, unless otherwise specified, put the necessary bevel in the bed-plate and not in the base-plate. In short spans, say up to 50 feet, put slotted holes for anchor-bolts in both ends of girders, $3 / 8^{\prime \prime}$ larger diameter than the anchor bolts.

In square spans, show only one-half, but give all main dimensions for the whole span. In skew spans show the whole span; when the panels in one-half
of span are same as in the other half, give the lengths of these panels, but do not repeat rivet-spacing, except where it differs.

In the small scale diagram, which shall appear on every sheet, unless span is drawn in full, show the position of stiffeners, particularly those to which cross-frames or floorbeams connect.

Deck Plate Girder Spans.-On top of sheet show a top view of span, with cross-frames, laterals and their connections complete, with the girders placed at right distances apart. Below this view show the elevation of the far girder as seen from the inside, with all field holes in flanges and stiffeners indicated and blackened. At one end of the elevation show in red the bridge-seat and back wall, give figures for distance from base of rail to top of masonry, notch of ties, depth of girder, thickness of base-plate and of bed-plate or shoe. When the other end of girder has a different height from base of rail to masonry, give both figures at the one end, and specify "for this end" and " for other end." If span has bottom lateral bracing, a bottom view (horizontal section) shall be shown below the elevation. When no bottom laterals are required, show only end or ends of lower flange of girder, giving detail of base-plate and its connection to the flange. Detail the bed-plate separately, never show it in connection with the base-plate.

Cross-frames shall, whenever possible, be detailed on the right hand of the sheet in line with the elevation. The frame shall be made of such depth as to permit it being swung into place without interfering with the heads of the flange rivets in the girders. Always use a plate, not a washer with one rivet, at the intersection of diagonals. In skew spans it is always preferable to have an uneven number of panels in the lateral system.

Through Plate Girder Spans.-Show on top of sheet an elevation of the far girder as seen from inside; below this view show a horizontal section of span as seen from above with the lateral system detailed complete. It is generally best to show floorbeams and stringers in red in this view and to detail them on a separate sheet. The stiffeners in a through span should always be arranged so that the floor system can be put in place from the center towards the ends. What is said under "deck spans" about showing bridge-seat, back wall, detailing bed-plate separately, etc., applies to through spans as well.

TRUSS BRIDGES.-General Rules.-Before any details are started all c. to c. lengths of chords, posts, diagonals, etc., shall be determined, and sketches made of shoes, panel-points, splices, etc., so that the matcrial can be ordered as soon as required.

If not otherwise specified, camber shall be provided in the top chord by increasing the length $1 / 8^{\prime \prime}$ for every to feet for railroad bridges, and $3 / 16^{\prime \prime}$ for every io feet for highway bridges. This increase in length shall not be considered in figuring the length of the diagonals, except in special cases, as directed by the engineer in charge. Half the increase in length shall be considered in figuring the length of the top laterals. Particular attention must be paid to what is said under "General Rules" about showing part of adjoining member in red, and about the small scale diagram on every sheet.

For every truss bridge an erection diagram shall be made on a separate sheet, giving the shipping marks of the different members and all main dimensions, such as c. to c. trusses, height of truss, number and length of panels, length of diagonals, distance from base of rail to masonry, distance from center of bottom chord or pin to masonry, size and grip of pins (Fig. 7), also show in larger scale the packing at panel points, state any special feature which the erector needs to look out for, and give approximate weight of heavy and important pieces when their weight exceeds five tons. If in any place it is doubtful whether rivets can be driven in the field, the erection diagram and also the detail drawings shall state that "turned bolts may be used if rivets cannot be driven." A list giving number and contents of drawings belonging to the bridge shall also appear on the erection diagram sheet.

Riveted Truss Bridges.-In square spans, not too large, show the left half of the far truss as seen from the inside and detail all members in their true position, making scale of the skeleton one-half the scale of the details. In skew spans, not symmetrical, show the whole of the far truss. In large spans detail every member separately. When detailing web members bear in mind that the intersection point on the chord must not be used as a working point for a member which stops outside of the chord. A separate working point, preferably the end rivet, shall be established on the member proper, and shall be tied up with the intersection point on the chord.

The clearance between the chord and a web member entering same shall, whenever possible, be not less than $1 / 8^{\prime \prime}$ in heavy and $\mathrm{I} / \mathrm{I}^{\prime \prime}$ in light structures.

Members shall be marked with the panel points between which they go, for example, end post $L_{0}-U_{1}$; hip vertical $U_{1}-L_{1}$; top chord $U_{1}-U_{2}$, etc., see Fig. 7.

Pin-connected Truss Bridges.-In pin-connected truss bridges detail the left half of the far truss as seen from the inside, every member by itself. It is generally best to commence with the end post, showing it lengthwise on the sheet with the lower end to the left; then the first section of the top chord, and so on. The packing at panel points shall, whenever possible, be so arranged that, besides the customary allowance of $1 / 16^{\prime \prime}$ for every bar, a clearance of not less than $3 / 8^{\prime \prime}$ can be provided between the two sides of the chord. When two or more plates are used, $1 / 32^{\prime \prime}$ should in addition be allowed for each plate. Members shall be marked the same as for riveted truss bridges, with the panel points between which they go, see Fig. 7.

Order of Detailing Truss Spans.-In making detail plans and bills of material the following order shall be followed for truss spans.
I. General Drawing;
2. End posts;
3. Upper chords;
4. Lower chords;
5. Intermediate posts;
6. Sway bracing;
7. Upper laterals;
8. Lower laterals;
9. Floorbeams;
10. Stringers;
II. Castings, bolts, eye-bars, pins, etc.

OFFICE BUILDINGS AND STEEL FRAME BUILDINGS.-Number of Drawings.-The different sheets shall be numbered consecutively, whether large or small. No half numbers are permissible except in emergency cases. It is always well to arrange the number so that the sheets follow in the order


Fig. 12. Floor Plans for Office Buildings.
in which the material is required at the building. The following is generally a good order:
I. Floor plans for all floors;
2. Column schedule;
3. Cast-iron bases for columns;


Fig. 13. Column Schedule for Office Buildings.
4. Foundation girders;
5. Foundation beams;
6. First tier of columns;
7. Riveted girders, connecting to first tier of columns;
8. Beams connecting to first tier of columns;
9. Miscellaneous material for above;
10. Second tier of columns, etc., etc.

Floor Plans.-Floor plans, Fig. 12, shall, as a rule, be made to a scale $1 / 8^{\prime \prime}$ to I ft. A separate plan shall be made for each floor, unless they are exactly alike. Columns shall be marked consecutively with numerals, the word Col. always appearing in front of the numeral, for example, Col. 20. The architect or engineer has generally on his drawing adopted a system of marking for the columns, which should be adhered to, unless altogether too impracticable. Riveted girders shall be indicated with two (2) fine lines when they have cover plates, and with four (4) fine lines when they have no cover plates. They shall be marked consecutively with numerals, using the same marks for girders which are alike. Beams and channels shall be indicated with one single heavy line. They shall be marked the same as girders, with numerals, using same marks when alike. Tie-rods shall be indicated with one single fine line; they need not have any marks. The marking system shall be as uniform as possible for the different floors, i. e., a beam which goes between Col. 2 and Col. 3 shall be marked with the same numeral throughout all the floors. All figures necessary for making the details shall, as a rule, appear on the floor plan, care being taken in writing same to leave room for the erection marks, which must be printed in heavy type above the line or lines representing a beam or girder.

Column Schedule.-For a very large building a schedule of the columns shall be made before the details are started, see Fig. 13. Each column, even should several be alike, shall have a separate space, in which shall be given the material and the finished length. As soon as the detail drawings for one tier of columns are finished the sheet numbers shall be inserted as shown on the sample schedule, Fig. 13, making the schedule serve as an index for the column drawings.

Columns.-Columns shall, whenever possible, be drawn standing up on the sheets as they appear in the building. If it becomes necessary to draw them lengthwise on the sheet, the base shall be to the left. Particular attention shall be paid to establishing a marking system for brackets, splice-plates, etc. A summary of all these standard pieces shall be made for each tier and sent to the shop as early as practicable, in order that they may be gotten out before the main material is taken up. The material for the small pieces shall, as far as possible, be chosen from stock sizes. Columns shall be marked with the number of the floor between which they go; Col. 5 (I-3). The lower tier is best marked "Basement Tier." Standard details for columns are given in Fig. 14 and Fig. 15 .

Riveted Girders.-Girders shall be marked with the number of the floors, not with letters, unless requested; for example, 2d Floor, No. 5. What is said under columns about marking system for standard pieces applies to girders as well. When a girder is unsymmetrical about the center line, and a question may arise how to erect it, one end shall be marked with the number of the column to which it connects, or with North, South, East or West. Girders


Fig. 14. Standard Details for Bethlehem H-Columns.
must not be bunched together for the different floors more than to meet the requirements in the field; but they must correspond to the tiers of columns as they will be erected.



Rivets $\frac{3^{\prime \prime}}{4}$ Diam s
3 Beams

$$
\begin{aligned}
& \text { 2-B45-3rd.Fl. } \\
& 1-B 45-4 \text { th. Fl. }
\end{aligned}
$$

Holes $\frac{13}{16}{ }^{\circ}$ Diam.
Fig. 16. Standard Details for Rolled Beams.

Beams.-Beams shall be drawn on the standard forms provided for the purpose. They need not be drawn to scale, see Fig. 16 and Fig. 17. Beams shall be marked the same as girders with the number of the floor; One 12" I @ 40 lbs . $\times 19^{\prime}-3^{1 / 2 \prime}$, (Mark) ad Floor No. 35. What is said under girders about marking one end, when not symmetrical around the center line, and about not


Fig. 17. Standard Details for Rolled Beams.
bunching the different floors more than to meet the requirements in the field, applies to beams as well.

Whenever possible use standard framing angles, Tables 7 and 8. If it is deemed necessary to use $6^{\prime \prime} \times 6^{\prime \prime}$ angles, punch both legs the same as the $6^{\prime \prime}$ leg of standard; in $3^{1 / 22^{\prime \prime}} \times 3^{1 / 22^{\prime \prime}}$ or $4^{\prime \prime} \times 3^{1 / 22^{\prime \prime}}$ angles, punch both legs the same as $4^{\prime \prime}$ leg of standard. It is not absolutely imperative that the gage of the framing angles shall be standard as long as the vertical distance between the holes and in the $6^{\prime \prime}$ leg the horizontal distance ( $21 / 4^{\prime \prime}$ ), are kept standard. Holes for connections, tie-rods, etc., shall be located from one end of the beam, preferably
the left. If one end rests on the wall and the other end is framed, then figure from the latter end, be it right or left. This rule may be dispensed with in case of numerous holes regularly spaced in web or flange for connection of shelf-angles, buckle-plates, etc. The allowed overrun at ends of beams must always be indicated, either by giving figures or by showing wall bearing. Holes at the end of beam for anchors are best figured from wall end, not connecting them with other figures. The distance between end holes in beams which connect through web or flange to columns, girders, etc., shall always be given. When framing angles are standard, do not give any figures for either shop or field rivets, except the distance from bottom of beam to center of connection or to first holes in framing angle, and the horizontal distance between field holes. When special framing angles are used, the fact must be noted and figures given for gages, etc. For standard connection holes in web of beam all figures required are the distance from bottom of beam to centre of connection or to first hole and the horizontal distance between holes. Whenever possible use standard punching.

ERECTION PLAN FOR MILL BUILDINGS.-The preceding method for office buildings will need considerable modification for steel frame mill buildings. The following method for making erection plans for steel frame mill buildings has been found very satisfactory.

If the points of the compass are known, mark all pieces on the north side with the letter, N, those on the south with the letter, S, etc. Mark girts N.G.I; N.G.2 ; etc. Mark all posts with a different number, thus: N.P.I; N.P.2; etc. Mark small pieces which are alike with the same mark; this would usually include everything except posts, trusses and girders, but in order to follow the general marking scheme, where pieces are alike on both sides of a building, change the general letter; e. g., N.G. 7 would be a girt on the north side and S.G. 7 the same girt on south side. Then in case the north and south sides are alike, only an elevation of one side need be shown, and under it a note thus: "Pieces on south side of building, in corresponding positions have the same number as on this side, but prefixed by the letter, S, instead of the letter, N." Mark trusses T.I; T.2; etc. Mark purlins R.I; R.2; etc.

The above scheme will necessarily have to be modified more or less according to circumstances; for example, where a buildirg has different sections or divisions applying on the same order number, in which case each section or division should have a distinguishing letter which should prefix the mark of every piece. In such cases it will perhaps be well to omit other letters, such as N., S., etc., so that the mark will not be too long for easy marking on the piece. In general, however, the scheme should be followed of marking all the larger pieces, whether alike or not, with a different mark. This would refer to pieces which are liable to be hauled immediately to their places from the cars. But for all smaller pieces which are alike, give the same mark.

DETAIL NOTES.-Sections.-End views of sections shall be shown as in (a) Fig. 18, and sections shall be cross-hatched or blackened as shown in (b) Fig. 18.

Assembling Note.-Covers, webs, flange angles, etc., must not be marked alike when it would be necessary to turn them end for end, see (c) Fig. I8.

Rivet Spacing.-Rivet spacing must be tied up from end to end.
Connection Plates.-In detailing connection plates wherever bevel for holes on lines " $b$," (d) and (e) Fig. 18, is different, spacing for holes on lines "a" should be made different to prevent plates from being interchanged.


Fig. 18.
Writing Angles.-In writing angles give the longer leg first, $1-L 6^{\prime \prime} \times$ $4^{\prime \prime} \times 1 / 2^{\prime \prime} \times 10^{\prime}-01 / 2^{\prime \prime}$.

Writing Plates.-In writing plates the width of the plate is given in inches, the thickness in inches, and the length in feet and inches; $2-\mathrm{PI} .48^{\prime \prime} \times 3 / 8^{\prime \prime} \times 15^{\prime}-$ $03 / 4^{\prime \prime}$. A length of 9 inches should be written $0^{\prime}-9^{\prime \prime}$. and not $9^{\prime \prime}$. The width of a plate is the dimension at right angles to the length of the member, while the length of a plate is the dimension parallel to the length of the member to which the plate is attached; except that for lacing bars, tie plates and other universal mill plates 6 inches and less in width the least dimension is taken as the width of the member, and for splice plates the width is the dimension at right angles to the splice.

Writing Sections.-Sections are written as follows: I-I 12" @ $40 \mathrm{lbs} . \times$ 16'-3 ${ }^{1 / 4^{\prime \prime}}$.

Miscellaneous.-Bevels may be shown as so many inches in $12^{\prime \prime}$, (a) Fig. I9; or where convenient the total lengths may be given as in (b) Fig. 19. The latter method is the better as it assists the checker and the templet maker.

The maximum amount that one leg of an angle can be bent is $45^{\circ}$. For a greater bend than $45^{\circ}$ a bent plate shall be used, (c) Fig. 19.

The center to center length of stiff laterals should be not less than $1 / 16^{\prime \prime}$ short.

Do not use 2 sizes of rivets in the same leg, or same angle, or same piece unless absolutely necessary.

Where unequal legged angles are used mark the width of one leg of the angle on the leg.

Where heavy laterals are spliced in the middle by a plate, ship the plate riveted to one angle only.

Do not countersink rivets in long pieces unless absolutely necessary.
Do not draw any more of a member than necessary, and do not dimension the same piece several times.

Revising Drawings.-When drawings have been changed after having been first approved, they must be marked, Revised (give date of revision).


Fig. 19.
Measuring Angles.-All measurements on angles are to be made from the back of the angle, and not from the edge of the flange. The center to center distance between open holes should always be given for each piece that is shipped separate, in order that the inspector can check the piece.

Width of Angles.-The widths of the legs of angles are greater than the nominal widths, unless the angle has been rolled with a finishing roll. The over-run for each leg is equal to the nominal width of the leg plus the increase in thickness of leg made by spreading the rolls. For example finishing rolls are used for rolling $3^{\prime \prime} \times 3^{\prime \prime}$ angles with a thickness of $1 / 4^{\prime \prime}$. The actual length of the leg of a $3^{\prime \prime} \times 3^{\prime \prime}$ angle is as follows: angle $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$, leg $3^{\prime \prime}$; angle $3^{\prime \prime} \times 3^{\prime \prime} \times 5 / 16^{\prime \prime}$, leg $3 \mathrm{I} / 16^{\prime \prime}$; angle $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}$, leg $3^{1 / 2 \prime} 8^{\prime \prime}$; angle $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 2^{\prime \prime}$, leg $3^{1 / 4^{\prime \prime}}$; angle $3^{\prime \prime} \times 3^{\prime \prime} \times 5 / 8^{\prime \prime}$, leg $33 / 8^{\prime \prime}$.

POINTS TO BE OBSERVED IN ORDER TO FACILITATE ERECTION.-The first consideration for ease and safety in erection should be to so arrange all details, joints and connections that the structure may be connected and made self-sustaining and safe in the shortest time possible. Entering connections of any character should be avoided when possible, notably on top chords, floor beam and stringer connections, splices in girders, etc. When practicable, joints should be so arranged as to avoid having to put members together by entering them on end, as it is often impossible to get the necessary clearance in which to do this. In all through spans floor connections should be so arranged that the floor system can be put in place after the trusses or girders have been erected in their final position, and vice versa, so that the
trusses or girders can be erected after the floor system has been set in place. All lateral bracing, hitch-plates, rivets in laterals, etc., should, as far as possible, be kept clear of the bottoms of the ties, it being expensive to cut out ties to clear such obstructions. Lateral plates should be shipped loose, or bolted on so that they do not project outside of the member, whenever there is danger of their being broken off in unloading and handling. Loose fillers should be avoided, but they should be tacked on with rivets, countersunk when necessary.

In elevated railroad work, viaducts and similar structures, where longitudinal girders frame into cross girders, shelf angles should be provided on the latter. In these structures the expansion joints should be so arranged that the rivets connecting the fixed span to the cross girder can be driven after the expansion span is in place. In viaducts, etc., two spans, abutting on a bent, should be so arranged that either span can be set in place entirely independent of the other. The same thing applies to girder spans of different depth resting on the same bent. Holes for anchor-bolts should be so arranged that the holes in the masonry can be drilled and the bolts put in place after the structure has been erected complete.

In structures consisting of more than one span a separate bed-plate should be provided for each shoe. This is particularly important where an old structure is to be replaced; if two shoes were put on one bed plate or two spans connected on the same pin, it would necessitate removing two old spans in order to erect one new one. In pin-connected spans the section of top chords nearest the center should be made with at least two pin-holes. In skew spans the chord splices should be so located that two opposite panels can be erected without moving the traveler. Tie plates should be kept far enough away from the joints and enough rivets should be countersunk inside the chord to allow eye-bars and other members being easily set in place. Posts with channels or angles turned out and notched at the ends should be avoided whenever possible.

ORDERING MATERIAL.-Bridge Work.-Ordinarily plates less than $48^{\prime \prime}$ wide are ordered U. M. (universal mill or edge plates), but when there is no need for milled edges and prompt delivery is essential specify either U. M. or sheared. Never order widths in eighths. Flats and universal (edge) plates over $4^{\prime \prime}$ in width should be ordered in even inches, flats under $4^{\prime \prime}$ should be ordered by $1 / 2^{\prime \prime}$ variation in width. Flats $1 / 4^{\prime \prime}$ and under in thickness are very difficult to secure from the mills and should be avoided if possible.

Rolling mills are allowed a variation of $1 / 4^{\prime \prime}$ in width of plates, over or under, and a variation of $3 / 8^{\prime \prime}$ in length, over or under, from the ordered width or length. Rolling mills are allowed a variation of $3 / 8^{\prime \prime}$ over or under the ordered length of beams, channels, angles, zees, etc. An extra price is charged for cutting to exact length.

Allow $1 / 16^{\prime \prime}$ in thickness for planing plates $2^{\prime} 6^{\prime \prime}$ square or less, $1 / 8^{\prime \prime}$ for plates more than $2^{\prime} 6^{\prime \prime}$ square, and $1 / 8^{\prime \prime}$ for columns; chords and girders which have milled ends are ordered $1 / 4^{\prime \prime}$ longer than the finished dimensions.

Web plates should be ordered $1 / 2^{\prime \prime}$ less than the back to back of flange angles unless a less clearance is specified. Web plates should preferably be ordered in even inches and the distance back to back of angles made in fractions.

When angles, beams or channels are bent in a circle allow $9^{\prime \prime}$ to $12^{\prime \prime}$ for bending.

Bent plates should be ordered to the length of the outside of the bend.
Large gusset plates, large plates with angle cuts, etc., should be ordered as sketch plates, when the amount of waste if ordered rectangular will exceed 20 per cent. Mills will not make re-entrant cuts in plates or shapes.

In ordering lacing bars add $3 / 16^{\prime \prime}$ to the finished length and order in multiple lengths.

ORDERING MATERIAL.-Building Work.-Order beams in foundation neat length.

Order beams framing into beams $3 / 8^{\prime \prime}$ short for each end, see Fig. 20.
Order main column material $3 / 4^{\prime \prime}$ long for milling both ends (this takes care of permissible variation in length of plus or minus $3 / 8 \mathrm{in}$. as well as the milling).

Order girder flange angles and plates $I^{\prime \prime}$ long.


Fig. 20. Beams Between Columns.

Order girder web plates $1 / 2^{\prime \prime}$ short, where end connections are used.
Order'girder web plates neat length, where end connections are not used.
Order girder web plates $1 / 2^{\prime \prime}$ less in width than back of flange angles.
Order stiffener angles $1 / 4^{\prime \prime}$ long.
Order fillers under stiffeners neat length.
Add $3 / 16^{\prime \prime}$ to each lacing bar and order in multiple lengths.
SHAPES AND PLATES MOST EASILY OBTAINED.-The ease with which different commercial sizes of shapes and plates may be obtained from the rolling mill varies with the mill and with the demand. Where any section is in demand rollings are frequent and the orders are promptly filled, while the order for a section not in demand may have to wait a long time until sufficient orders have accumulated to warrant a special rolling.

The following list of plates and sections is fairly accurate, the list varying from time to time.

Plates.-Plates most easily obtained.

| Width, <br> Ins. | Thickness, <br> Ins. | Width, <br> Ins. | Thickness, <br> Ins. |
| :---: | :---: | :---: | :---: |
| $\mathrm{I}^{\frac{1}{2}}$ | $\frac{3}{16}$ and $\frac{1}{4}$ | 5 | $\frac{1}{4}$ and up |
| $\mathrm{I}^{\frac{3}{4}}$ | $\frac{3}{16}$ and $\frac{1}{4}$ | 6 | $\frac{1}{4}$ and up |
| 2 | $\frac{3}{16}$ and $\frac{1}{4}$ | 7 | $\frac{3}{4}$ and up |
| 2 | $\frac{1}{4}$ and up | 8 | $\frac{1}{4}$ and up |
| $2 \frac{1}{4}$ | $\frac{3}{4}$ and up | 9 | $\frac{1}{4}$ and up |
| $2 \frac{1}{2}$ | $\frac{1}{4}$ and up | 10 | $\frac{1}{4}$ and up |
| 3 | $\frac{1}{4}$ and up | 12 | $\frac{1}{4}$ and up |
| $3 \frac{12}{4}$ | $\frac{3}{4}$ and up | 14 | $\frac{1}{4}$ and up |

Over $14^{\prime \prime}$ in width it is immaterial what width of plate is specified.
Squares and Rounds.-Squares and rounds most easily obtained.
Rounds, $5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}$, $\mathrm{I}^{\prime \prime}$, $11 / 4^{\prime \prime}, \mathrm{I}^{1} / 2^{\prime \prime}$.
Squares, $3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}$, $\mathrm{I}^{\prime \prime}$, I $1 / 4^{\prime \prime}$, I $1 / 2^{\prime \prime}$.
All other sizes are liable to cause delay.
Beams.-Sizes of I-Beams which can be obtained most readily.


Sizes of I-Beams which may be used but for which prompt deliveries may not be expected.

| Depth. | Weight. |  |
| :---: | :---: | :---: |
| $5^{\prime \prime}$ | $9 \frac{3}{4}$ | lbs. |
| $7^{\prime \prime}$ | 15 | lbs. |
| $9^{\prime \prime}$ | 21 | lbs. 25 lbs. |

Beams of weights different from the above can always be obtained from the mills but not so readily as those given. Beams of minimum section can always be obtained more readily than heavier sections.

Channels.-Channels which can be most readily obtained from the mills.

| Depth. | Weight. |  |  |
| :---: | :---: | :---: | :---: |
| 6 ' |  | lbs. |  |
| $8^{\prime \prime}$ | $11{ }^{13}$ | lbs. 18 | 星 1 bs . |
| $10^{\prime \prime}$ |  | lbs. 20 | 1bs. 25 lbs. |
| $12^{\prime \prime}$ | $20^{\frac{1}{2}}$ | lbs. 25 | lbs. 30 lbs . |
| 15 " | 33 | lbs. 40 | 1bs. 50 lbs . |

Sizes which may be used but for which prompt deliveries cannot be expected.

| Depth. | Weight. |
| :---: | ---: |
| $5^{\prime \prime}$ | $6 \frac{1}{2} \mathrm{lbs}$. |
| $7^{\prime \prime}$ | $9^{\frac{3}{4}} \mathrm{lbs}$. |
| $9^{\prime \prime}$ | $13^{\frac{1}{4}} \mathrm{lbs}$. |

Channels of weights different than those given above can always be obtained at the mills but not so readily as those given. Channels of minimum section can always be obtained more readily than heavier sections.

Angles.-Angles most easily obtained from the mill.
Even legs. $-2^{1 / 22^{\prime \prime}} \times 2^{1 / 2 \prime \prime} ; 3^{\prime \prime} \times 3^{\prime \prime} ; 3^{1 / 2^{\prime \prime}} \times 3^{1 / 2 \prime \prime} ; 4^{\prime \prime} \times 4^{\prime \prime} ; 6^{\prime \prime} \times 6^{\prime \prime}$.
Uneven legs.-2¹/2" $\times 2^{\prime \prime} ; \quad 3^{\prime \prime} \times 2^{11} 2^{\prime \prime} ; \quad 3^{1 / 2^{\prime \prime}} \times 3^{\prime \prime} ; 4^{\prime \prime} \times 3^{\prime \prime} ; \quad 5^{\prime \prime} \times 3^{1 / 2 \prime}$; $6^{\prime \prime} \times 4^{\prime \prime}$.

Angles which may be used but for which prompt deliveries cannot be expected.

Even legs.— $2^{\prime \prime} \times 2^{\prime \prime} ; 2^{1} / 4^{\prime \prime} \times 2^{1 / 4^{\prime \prime}} ; 5^{\prime \prime} \times 5^{\prime \prime} ; 8^{\prime \prime} \times 8^{\prime \prime}$.
Uneven legs. $-3^{\prime \prime} \times 2^{\prime \prime} ; 3^{1 / 22^{\prime \prime}} \times 2^{1 / 2 \prime \prime} ; 4^{\prime \prime} \times 3^{1 / 2 \prime} ; 6^{\prime \prime} \times 3^{1122^{\prime \prime}}$.
Angles $4^{\prime \prime} \times 3^{1 / 2^{\prime \prime}} ; 5^{\prime \prime} \times 4^{\prime \prime} ; 7^{\prime \prime} \times 3^{1 / 22^{\prime \prime}}$ and $8^{\prime \prime} \times 6^{\prime \prime}$ are very difficult to obtain.

To obtain prompt deliveries as few sizes and shapes as practicable should be used for any contract. For example if $6^{\prime \prime} \times 4^{\prime \prime}$ angles are used $6^{\prime \prime} \times 3^{1 / 2 \prime} 2^{\prime \prime}$ should be avoided, and vice versa.

Tees.-If possible the use of Tees should be confined to $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}$ and $2^{\prime \prime} \times 2^{\prime \prime} \times 5 / 16^{\prime \prime}$, and even these sizes are uncertain of delivery.

Zees.-The delivery of zees is uncertain and will depend upon special rollings, which do not occur frequently. The following sizes are the most used, and are therefore most easily obtained.

| Web. | Thickness. |
| :---: | :---: |
| $3^{\prime \prime}$ |  |
| $4^{\prime \prime}$ | $\frac{1}{4 \prime}^{\prime \prime}, \frac{5}{16}{ }^{\prime \prime}{ }^{\prime \prime}$ and $3^{\prime \prime}$ |
| $5^{\prime \prime}$ | $\frac{5}{16}{ }^{\prime \prime}$, $\frac{3}{8 \prime \prime}^{\prime \prime}$ and $\frac{1}{2 \prime}{ }^{\prime \prime}$ |
| $6^{\prime \prime}$ | $\frac{3}{8}^{\prime \prime}$, $\frac{1}{2}^{\prime \prime}$, $\frac{5}{8 \prime}^{\prime \prime}$, $\frac{3}{4 \prime}^{\prime \prime}$, $7^{\prime \prime}$ and $\mathrm{I}^{\prime \prime}$ |

Stock Material.-The Pennsylvania Steel Company carries the following material in stock in 30 ft . lengths for use in its structural plant.

## Angles, Even Legs.

$6^{\prime \prime} \times 6^{\prime \prime} \times \frac{7}{16}{ }^{\prime \prime}$ and $\frac{7_{2}^{\prime \prime}}{}{ }^{\prime \prime}$
$4^{\prime \prime} \times 4^{\prime \prime} \times 8^{\prime \prime}$ and $\frac{7}{16}{ }^{\prime \prime}$
$3^{\frac{1}{2}}{ }^{\prime \prime} \times 3^{\frac{1}{2}}{ }^{\prime \prime} \times \frac{3_{8}^{\prime \prime}}{}{ }^{\prime \prime}$ and $\frac{7}{16}^{\prime \prime}$
$3^{\prime \prime} \times 3^{\prime \prime} \times \frac{5}{16}{ }^{\prime \prime}$, $\frac{3}{8}^{\prime \prime}$ and $\frac{7}{16}{ }^{\prime \prime}$

Angles, Uneven Legs.
$6^{\prime \prime} \times 4^{\prime \prime} \times \frac{3_{8}^{\prime \prime}}{8 \prime}, \frac{7}{16}{ }^{\prime \prime}$ and $\frac{7}{2}{ }^{\prime \prime}$
$5^{\prime \prime} \times 3^{\frac{1}{2}}{ }^{\prime \prime} \times \frac{3_{8}^{\prime \prime}}{8 \prime}, \frac{7}{16}{ }^{\prime \prime}$ and $\frac{7_{2}^{\prime \prime}}{}{ }^{\prime \prime}$
$4^{\prime \prime} \times 3^{\frac{1}{2}}{ }^{\prime \prime} \times \frac{5^{5}}{16}$, and $\frac{3}{8}^{\prime \prime}$
$3^{\frac{1}{2}}{ }^{\prime \prime} \times 3^{\prime \prime} \times \frac{5}{16}^{\prime \prime}$ and $\frac{3}{8}^{\prime \prime}$ $3^{\prime \prime} \times 2^{\frac{1}{2}}{ }^{\prime \prime} \times \frac{5^{\prime \prime}}{}{ }^{\prime \prime}$ and $\frac{3}{8}^{\prime \prime}$

```
Plates.
20" }\times\frac{3}{8\prime\prime}\mp@subsup{}{}{\prime\prime}\mathrm{ and 年"
18" }\times\frac{\mp@subsup{3}{8}{\prime\prime}}{\prime\prime}\mathrm{ and }\frac{1}{2}\mp@subsup{}{}{\prime\prime
16" }\times\frac{\mp@subsup{3}{}{\prime\prime}}{\prime\prime}\mathrm{ and }\frac{1}{2\prime\prime
15" }\times\frac{3}{8\prime\prime}\mathrm{ " and }\frac{1}{2}\mp@subsup{}{}{\prime\prime
14" }\times\frac{\mp@subsup{3}{}{\prime\prime}}{\prime\prime}\mathrm{ and }\frac{1}{2}\mp@subsup{}{}{\prime\prime
13"}\times\frac{\mp@subsup{3}{8}{\prime\prime}}{\prime\prime}\mathrm{ and }\frac{\mp@subsup{1}{}{\prime\prime}}{
12"}\times\frac{3}{8\prime\prime},\frac{7}{16}\mp@subsup{}{}{\prime\prime}\mathrm{ and }\frac{1}{2}\mp@subsup{}{}{\prime\prime
10" }\times\frac{3}{8\prime\prime}\mathrm{ " and }\frac{7}{16"
    9"}\times\frac{3}{8\prime\prime
```

Flats.
$7^{\prime \prime} \times{ }^{3 \prime}$
$6^{\prime \prime} \times \frac{3_{8}^{\prime \prime}}{}$ and $\frac{1}{2}{ }^{\prime \prime}$
$3^{\frac{1}{2}}{ }^{\prime \prime} \times \frac{3_{8}^{\prime \prime}}{}{ }^{\prime \prime}$, $\frac{1}{2}^{\prime \prime}$ and ${ }^{\frac{5}{8 \prime \prime}}$ $3^{\prime \prime} \times \frac{3^{\prime \prime}}{8^{\prime \prime}}$ and $\frac{7}{16}{ }^{\prime \prime}$ $2^{\frac{1}{2}}{ }^{\prime \prime} \times \frac{3_{8}^{\prime \prime}}{}{ }^{\prime \prime}$ and $\frac{7}{16}{ }^{\prime \prime}$ $22^{\prime \prime} \times \frac{5}{16}{ }^{\prime \prime}$ and $\frac{3}{8}^{\prime \prime}$ $2^{\prime \prime} \times \frac{1^{\prime \prime}}{}$ and $\frac{5^{\prime \prime}}{16}$

CHAPTER III.

## Estimates of Structural Steel.

GENERAL INSTRUCTIONS.-When an estimate of the structural steel in a structure is to be made the man in charge shall immediately examine all of the data furnished to see that he has sufficient information to make a satisfactory estimate. He shall fill out the data sheet completely, and then take off the quantities. Use only the standard estimate blanks for taking off material. The author has found the estimate blank below very satisfactory.


Number each page consecutively, and when all the quantities are totaled prepare a summary on the last page. Each sheet shall have the sheet number and also the total number of sheets in the estimate, for example 9 of 20 . This
will prevent the loss of a page. After the estimate is completely taken off another man shall check it. When checked the estimate shall be extended by the checker, each sheet being immediately totaled up as extended. The extensions shall then be checked by the original estimator, who also prepares a summary. The summary is then checked by the checker and the estimate is complete.

The estimate should be practically a condensed bill of material of the work, and should be so clearly made that a reference to the estimate will show at a glance the weight of all the principal pieces. Main and secondary trusses, main columns, girders, crane girders, etc., for buildings, and trusses, girders, floor beams, etc., for bridges should be taken off separately, thus-I truss, 6 required -and shall not be mixed together even though the correct weight is obtained. In making an estimate the following order will be found convenient.
I. MILL BUILDINGS.-Trusses.-Top chords, lower chords, web members, purlin lugs, gusset plates, connection plates, splice plates, eave strut connections, knee braces and knee brace connections.

Ventilator Trusses.-Rafters, posts, web members, gusset plates, connections to trusses and purlin lugs.

Columns.-Column angles, web plate, base plate and angles, crane seat and cap. Base includes anchor bolts.

Crane Girders.-Flange angles, web plate, cover plates, end stiffeners, intermediate stiffeners, fillers, knee braces and knee brace connections. Rails, splice bars, clips and crane stops.

Miscellaneous.-Eave struts, lattice girders, purlins, girts, ridge struts, lower chord struts, column struts, rafter bracing, lower chord diagonals, reinforcing angles for purlins used as rafter struts, and sag rods.

Miscellaneous Materials Not Structural Steel.-Corrugated steel roofing and siding, louvres, flashing and ridge roll, gutters, conductors, downspouts, ventilators, stack collars. Windows, doors, skylights, operating device, lumber, roofing, brick and concrete.
2. OFFICE BUILDINGS.-Floor beams, girders, including all their connections not riveted to other members. Floors should be estimated separately using a multiplier if two or more are exactly alike.

Columns.-Columns including splices and connections riveted to the columns. If columns are of Bethlehem "H" sections, it should be so noted on the estimate summary. Estimate columns in tiers.

Miscellaneous, such as suspended ceilings, galleries, penthouses, lintels, curbangles, canopies, etc.
3. TRUSS BRIDGES.-Truss members should be taken off separately in order that the estimate will show at a glance the weight of any main member. Never write off material for the trusses thus, " $1 / 2$-Truss-4 Req'd."

Stringers; floor beams; portals; sway trusses; upper laterals; lower laterals; shoes, masonry plates, anchor bolts, etc.

A convenient order can easily be arranged for other structures.

INSTRUCTIONS FOR TAKING OFF MATERIAL.-Quantity estimates shall give the shipping weights, not shipping weights plus scrap. Pin plates, gusset plates, etc., shall be taken off as equivalent rectangular plates. Large irregular plates or small irregular plates which occur in larger numbers shall have the exact sizes shown in the estimate and should have their weights accurately calculated. All quantity estimates shall be made out with black drawing ink.

The following colored pencils shall be used in estimating:
Black.-In taking off quantities, all check marks on drawings or blue prints shall be made with a black pencil.

Red.-In checking "quantities taken off" all check marks on drawings, blue prints and data sheets shall be made with a red pencil.

Blue.-Blue pencils shall be used for checking extensions, also for making notes, corrections, alterations or additions on white prints or tracings.

Yellow.-All alterations, corrections or additions, on blue prints at the time of estimating shall be made with a yellow pencil.

All notes on blue prints or drawings in regard to alterations, corrections or additions shall be dated and signed by the person in charge of the estimate. In general all work shall be taken off in feet and inches. Lengths of bolts shall be given in feet and inches.

CLASSIFICATION OF MATERIAL.-In making the summary steel and iron should be classified as follows:

Bars, including plates $6^{\prime \prime}$ wide and under, rounds up to $3^{\prime \prime}$ in diameter and squares up to $3^{\prime \prime}$ on a side.

Plates (a) Flats over $6^{\prime \prime}$ wide up to and including $100^{\prime \prime}$, and $1 / 4^{\prime \prime}$ thick and over.
(b) Flats over $100^{\prime \prime}$ wide up to and including $110^{\prime \prime}$.
(c) Flats over $110^{\prime \prime}$ wide up to and including $115^{\prime \prime}$.
(d) Flats over $1155^{\prime \prime}$ wide up to and including $120^{\prime \prime}$.
(e) Flats over $120^{\prime \prime}$.
(f) Plates 3/16" thick.
(g) Plates $1 / 8^{\prime \prime}$ thick.
(h) Plates checkered.
(i) Plates buckle.

Angles (a) Having both legs $6^{\prime \prime}$ wide or under.
(b) Having either leg more than $6^{\prime \prime}$ in width.
(c) Having both legs less than $3^{\prime \prime}$ in width.

Channels and I-Beams
(a) Channels and beams up to and including $15^{\prime \prime}$ in depth.
(b) Over $15^{\prime \prime}$ in depth.

If Bethlehem sections are used distinguish between "Bethlehem Special I-Beams" and " Girder Beams," and also regarding depths as above.

Zees.
Tees.
Rails (Separate rails under 50 lbs . per yd., rails over 100 lbs . per yd., and girder rails).

Rail Splices.
Iron Castings.
Steel Castings.
Nuts.
Clevices and Turnbuckles.
Pins, rounds from $3^{\prime \prime}$ in diameter to $63 / 4^{\prime \prime}$ in diameter.
Forgings, rounds over $63 / 4^{\prime \prime}$ in diameter.
Bronze.
Lead.
Rivets and Bolts.
Rivet Heads.-Where the estimate is made from shop drawings the actual number of rivet heads shall be determined. The weight of rivet heads in per cent of the total weight of the other material is about as follows: Purlins, girts and beams, 2 per cent; trusses and bracing, 4 per cent; plate girders and columns of 4 angles and I pl., 5 per cent; plate girders and columns with cover plates, 6 per cent; box girders or channel columns with lacing, 7 per cent; trough floors, 8 to io per cent.

Bolts are usually taken off in the estimate when they occur, and entered as rivets. When bolts are under 6 " in length, include bolts under the item "Bolts and Rivets." When over 6 " in length, put the bolts under "Bars."

Miscellaneous Materials.-Corrugated Steel.-Always give the number of gage, whether painted or galvanized, and whether iron or steel. This remark also applies to louvres, flashing, ridge roll, gutters and conductors. State whether corrugated steel is for roofing or siding. Roofing shall be estimated in squares of 100 square feet, adding three feet on each end of building to the distance c. to c. of end trusses to allow for cornice. Allow one foot overhang at eaves. Siding shall be estimated in squares of 100 square feet, adding one foot at each end of building to allow for corner laps.

Louvres shall be estimated in square feet of superficial area, stating whether fixed or pivoted.

Flashing shall be estimated in lineal feet and shall be taken off over all windows where corrugated sheeting is used on the sides of building, and under all louvres and windows in ventilators.

Ridge Roll shall be estimated in lineal feet, adding one foot to the distarice center to center of end trusses. Ridge roll is usually taken off the same gage as the corrugated steel roofing.

Gutters and conductors shall be estimated in lineal feet, the conductors usually being spaced from 40 to 50 feet, depending upon the area drained.

Circular ventilators shall be estimated by number, giving diameter and kind, if specified.

Stack collars shall be estimated by number, giving diameter of stack.
Windows shall be estimated in square feet of superficial area, taking for the width the distance between girts. State whether windows are fixed, sliding, pivoted, counter-balanced or counter-weighted. State kind and thickness of glass and give list of hardware, and any thing else of a special nature.

Doors shall be estimated in square feet; state whether sliding, lifting, roll-
ing or swinging. Steel doors covered with corrugated steel shall be estimated by including the steel frame under steel and the covering with corrugated steel siding. State style of track, hangers and latch.

Skylights shall be estimated in square feet, giving kind of glass and frames.
Operating devices for pivoted windows or louvres shall be estimated in lineal feet.

Lumber shall be estimated in feet, board measure, noting kind. Note that lumber under $I^{\prime \prime}$ in thickness is classified as $I^{\prime \prime}$. Above $I^{\prime \prime}$ it varies by $I / 4^{\prime \prime}$ in thickness, and if surfaced will be $1 / 8^{\prime \prime}$ less in thickness, i. e., $13 / 4^{\prime \prime}$ sheathing is actually $15 / 8^{\prime \prime}$ thick, but shall be estimated as $13 / 4^{\prime \prime}$. Lumber comes in lengths of even feet; if a piece $10^{\prime}-8^{\prime \prime}$ or $11^{\prime}-0^{\prime \prime}$ is required, a stick $12^{\prime}-0^{\prime \prime}$ long shall be estimated. In using lumber there is usually considerable waste depending upon the purpose for which it is intended. In estimating tongue and grooved sheathing io to 20 per cent shall be added for tongues and grooves ard from 5 to 10 per cent for waste, depending upon the width of boards and how the sheathing is laid.

Composition roofing or slate shall be estimated in squares of 100 square feet, allowing the proper amount for overhang at eaves and gables and for flashing up under a ventilator or on the inside of a parapet wall.

Tile roofing or slate shall be estimated in squares of 100 square feet, adding 5 per cent for waste. Include in an estimate for tile roof, gutters, coping, ridge roll, plates over ventilator windows and plates under ventilator windows, these being estimated in lineal feet. Flat plates for the ends of ventilators shall be estimated in square feet.

Brick shall be estimated by number. For ordinary brick such as is used in mill building constructing estimate 7 brick per square foot for each brick in thickness of wall, i. e., a 9 in. wall is two bricks thick and contains 14 brick for each square foot of superficial area.

Always note whether walls are pilastered or corbeled and estimate the additional amount of brick required. If walls are plain, no percentage need be added for waste, but if openings such as arched windows occur add from 5 to 10 per cent.

Concrete shall be estimated in cubic yards. Walls or ceiling of plaster on expanded metal shall be estimated in squares of 100 square feet, noting thickness and kind of reinforcement. Reinforced concrete floors shall be estimated in square feet of floor area, noting thickness and kind of reinforcement. Paving of all kinds is estimated in square yards, but the concrete filling under the pavement itself is estimated in cubic yards. Concrete floor on cinder filling is usually estimated in square yards specifying its proportions.

CARD OF MILL EXTRAS.-If the estimate is to be based on card rates it will be necessary to have the subdivisions $a, b, c, d, e, f, r$, etc., as follows:
$a=0.15 c$. per $l b$. This covers plain punching one size of hole in web only. Plain punching, one size of hole in one or both flanges.
$b=0.25 c$. per $l b$. This, covers plain punching one size of hole in either web and one flange or web and both flanges. (The holes in the web and flanges must be of same size.)
$c=o .30 c$. per $l b$. This covers punching of two sizes of holes in wet only. Punching of two sizes of holes in either one or both flanges. One size of hole in one flange and another size of hole in the other flange.
$d=0.35 c$. per $l b$. This covers coping, ordinary beveling, riveting or bolting of connection angles and assembling into girders, when the beams forming such girders are held together by separators only.
$e=0.40 \mathrm{c}$. per $l b$. This covers punching of one size of hole in the web and another size of hole in the flanges.
$f=0.15 c$. per $l b$. This covers cutting to length with less vibration than $\pm 3 / 8 \mathrm{in}$.
$r=0.50 c$. per $l b$. This covers beams with cover plates, shelf angles, and ordinary riveted beam work. If this work consists of bending or any unusual work, the beams should not be included in beam classification.

Fittings.-All fittings, whether loose or attached, such as angle connections, bolts, separators, tie rods, etc., whenever they are estimated in connection with beams or channels, to be charged at I .55 c . per lb . over and above the base price. The extra charge for painting is to be added to the price for fittings also. The base price at which fittings are figured is not the base price of the beams to which they are attached tut is in all cases the base price of beams $15^{\prime \prime}$ and under.

The above rates will not include painting, or oiling, which should be charged at the rate of o.Ioc. per lb . for one coat, over and above the base price plus the extra specified above.

For plain punched beams where more than two sizes of holes are used, $0.15 c$. per lb . should be added for each additional size of hole, for example, plain punched beams, where three sizes of holes occur would be indicated as; $c+0.15 c$., four sizes of holes; $e+0.30 c$. For example: a beam with $5 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ holes in the flanges and $5 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ holes in the web should be included in class $e$.

Cutting to length can be combined with any of the other rates, class $d$ excepted, and would have to be indicated; for example: Plain punching one size of hole in either web and one flange, or web and both flanges, and cutting to length would be marked $b f$, which would establish a total charge of 0.40 c . per lb .

Note to class d.-No extra charge can be added to this class for punching various sizes of holes, or cutting to exact lengths; in other words; if a beam is coped or has connection angles riveted or bolted to it, it makes no difference how many sizes of holes are punched in this beam, the extra will always be the same, namely 0.35 c . When beams have angles or plates riveted to them, and same are not half length of the beam, figure the beams as class $d$, and the plates and angles as beam connections.

Note to class r.-This rate of 0.50 c . per lb . applies to all the material making up the riveted beam. In case of assembled girders in which one of the beams should be classed as a riveted beam, in making up the estimate, figure only the beam affected as included in class " $r$." When beams have angles or plates riveted to them and same are half length or more than half length of the beam, figure the beams as class " $r$," including the plates or angles and rivets. When $18^{\prime \prime}$ " $20^{\prime \prime}$, or $24^{\prime \prime}$ beams are in " $r$ " class keep the I's separate from the material
(plates, cast iron, separators, angles and rivets) which should go under heading, " 15 " I's and Under."

Beams should be divided as $15^{\prime \prime}$ I's and under, and $18^{\prime \prime}, 20^{\prime \prime}$ and $24^{\prime \prime}$ I's. If there are only one or two sizes of beams in any particular class, give exact sizes, instead of " 15 " I's and Under."

In estimating channel roof purlins classify $7^{\prime \prime}$ channels and smaller as one punched; $8^{\prime \prime}$ channels and larger as two punched, unless they are shown or noted otherwise, and keep separate from other beams.

No extra charge can be added to curved beams for riveting, cutting to length, etc.

Subdividing work into a large number of classes should be avoided; it is better to have too few classes, rather than too many.

The only subdivision necessary for cast iron columns are: $I_{0}^{\prime \prime}$ and over, and under $I^{\prime \prime}$. Columns with ornamental work cast on must be kept separate.

Round and Square Bars.-In estimating round and square bars use the standard card for extras, Table I. It is not usual to enforce more than one half the standard card extras for round and square bars.

> Extras.-Shapes, Plates and Bars: (Cutting to length)
> Under 3 ft. to 2 ft., inclusive .............................. 0.25 cts. per lb.
> Under 2 ft. to I ft., inclusive .............................. 0.50 cts. per lb .
> Under I ft. .................................................... 1.55 cts. per lb .

Extras-Plates (Card of January 7, 1902):
Base $\frac{1}{4}$ in. thick, 100 in . wide and under, rectangular (see sketches).
Weights-see Manufacturer's Standard Specifications, Carnegie or Cambria Hand-books.

|  | Per 100 Lbs. |
| :---: | :---: |
| Widths-100 in. to IIO in. | . \$ . 05 |
| IIO in. to II5 in. | . 10 |
| II5 in. to 120 in . | . 15 |
| 120 in . to 125 in . | . 25 |
| 125 in . to I 30 in . | . 50 |
| Over I30 in. | 1.00 |
| Gages under $\frac{1}{4} \mathrm{in}$. to and including $\frac{3}{16} \mathrm{in}$. | . 10 |
| Gages under ${ }^{3} \mathrm{i}$ in. to and including No. 8 | . 15 |
| Gages under No. 8 to and including No. 9 | . 25 |
| Gages under No. 9 to and including No. 10 | . 30 |
| Gages under No. Io to and including No. 12 | . 40 |
| Complete circles | . 20 |
| Boiler and flange steel | . 10 |
| Marine and fire box | . 20 |
| Ordinary sketches | . 10 |

(Except straight taper plates, varying not more than 4 in . in width at ends, narrowest end not less than 30 in ., which can be supplied at base prices.)
TABLE $L$.
Standard Classification of Extras on Iron and Steel Bars.*Rounds and Squares.
Squares up to $\Delta^{\frac{1}{4}}$ inches only. Intermediate sizes take the next higher extra.
Per 100 Lbs.
$\frac{3}{4}$ to 3 in. Rates
$\frac{5}{8}$ to $\frac{11}{16}$ " \$o.1o extra.
$\frac{1}{2}$ to $\frac{9}{16}$ " .....  20
$\frac{7}{16}$ ..... 40 "
$\frac{3}{8}$ " ..... 50
$\frac{5}{16} \quad$ " ..... 60 "
$\frac{1}{4}$ and $\frac{9}{32}$ " ..... 70 "
$\frac{7}{32}$ ..... 1.00 "
$\frac{3}{16}$ " ..... 2.00 "
$3^{\frac{1}{16}}$ to $3^{\frac{1}{2}}$ .....  15
$3^{\frac{9}{16}}$ to 4 ..... 25
$4^{\frac{1}{16}}$ to $4^{\frac{1}{2}}$ ..... 30
$4^{\frac{9}{16}}$ to 5 ..... 40
$5^{\frac{1}{8}}$ to $5^{\frac{1}{2}}$ .....  50
$5^{\frac{5}{8}}$ to 6 " ..... 75
$6 \frac{1}{8}$ to $6 \frac{1}{2}$ ..... 1.00
$6 \frac{5}{8}$ to $7^{\frac{1}{4}}$ " ..... I. 25
Flat Bars and Heavy Bands.
Per 100 Lbs.
$I$ to 6 in. $x \frac{3}{8}$ to $I$ in. ..... Rates.
I to 6 " $x^{\frac{1}{4}}$ and $\frac{5}{16}$ " \$0.20 extra.
$\frac{11}{16}$ to $\frac{15}{16} " x x^{\frac{1}{4}}$ and $\frac{5}{16}$ " ..... 40
$\frac{9}{16}$ and $\frac{5}{8}$ " $x \frac{3}{8}$ to $\frac{1}{2}$ " ..... 50
$\frac{9}{16}$ and $\frac{5}{8}$ " $x^{\frac{1}{4}}$ and $\frac{5}{16}$ " ..... 50 ..... "
$\frac{1}{2} \quad " x \frac{3}{8}$ and $\frac{7}{16}$ " ..... 70
" $x^{\frac{1}{4}}$ and $\frac{5}{16}$ " ..... I.Io
" $x^{\frac{3}{8}}$ " ..... 1.00
" $x^{\frac{1}{4}}$ and $\frac{5}{16}$ " ..... I. 20 "
$" x \frac{1}{4}$ and $\frac{5}{16}$ " ..... 1.50
$\mathrm{I} \frac{1}{8}$ to 6 in. $\mathrm{x} \frac{1}{16}$ to $\mathrm{I} \frac{3}{16} \mathrm{in}$. ..... IO
$\mathrm{I}_{\frac{1}{8}}^{\frac{1}{8}}$ to 6 " $\mathrm{x}_{\frac{1}{4}}^{\frac{1}{4}}$ to $\mathrm{I}_{\frac{1}{2}}$ " .....  20
$1 \frac{3}{4}$ to 6 " $\times I^{\frac{5}{8}}$ to $2 \frac{3}{4}$ " ..... 30
$3^{\frac{1}{8}}$ to 6 " $x_{3}$ to 4 " ..... 40

* Adopted August, 1902.


## Light Bars and Bands.



CORRUGATED STEEL.-Corrugated steel is rolled to U. S. standard gage. The weights of flat steel and corrugated steel for different gages and

## Corrugated Roof Steel Side Lap 2 Corrugations



Special Cor. Roof Steel Side Lap $1 \frac{1}{2}$ Corrugations


Corrugated Siding Steel Side Lap I Corrugation
 End Lap for Sides 4"
(C)

Fig. 2i. Details of Corrugated Steel.
thickness are given in Table II. This cable is for flat sheets and for corrugated steel with corrugations approximately $21 / 2 \mathrm{in}$. wide and $5 / 8 \mathrm{in}$. deep.

TABLE II.
Weight of Flat and Corrugated Steel Sheets with $2 \frac{1}{2}$-inch Corrugations.

| Gage No. | Thickness in Inches. | Weight per Square (roo Sq. Ft.). |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Flat Sheets. |  | Corrugated Sheets. |  |
|  |  | Black. | Galvanized. | Black Painted. | Galvanized. |
| 16 | . 0625 | 250 | 266 | 275 | 291 |
| 18 | 0500 | 200 | 216 | 220 | 236 |
| 20 | . 0375 | 150 | 166 | 165 | 182 |
| 22 | .0313 | 125 | 141 | 138 | 154 |
| 24 | . 0250 | 100 | 116 | 111 | 127 |
| 26 | . 0188 | 75 | 91 | 84 |  |
| 28 | . 0156 | 63 | 79 | 69 | 86 |

Corrugated siding and roofing is rolled as shown in Fig. 21. The special corrugated steel in (b) Fig. 2I is commonly used for roofing, and the corrugated steel in (c) is used for siding.


Fig. 22. Standard Details for Corrugated Steel.

The standard stork lengths vary by single feet from 4 ft . to 10 ft . Sheets can be obtained as long as 12 ft ., but are special and cost 5 per cent extra and will delay the order.

The purlins should be spaced for corrugated steel without sheathing for a load of 30 lbs . per sq . ft . on the roof, and 25 lbs . per sq . ft . on the sides, as given in Fig. 23.


Fig. 23. Safe Loads for Corrugated Steel.
Fastenings for Corrugated Sheeting.-Corrugated steel is fastened to purlins and girts usually by the following fasteners.

Straps.-These are made of No. 18 U. S. gage steel, $3 / 4$ of an in. wide. These straps pass around the purlins and are riveted to the sheets at both ends by $3 / 16^{\prime \prime}$ diameter rivets, $3 / 8 \mathrm{in}$. long; or, they may be fastened by bolts. Order one strap and two rivets, or bolts, for each lineal foot of girt or purlin, to which the corrugated steel is to be fastened, and add 20 per cent to the number of rivets for waste, and to per cent to the straps or the bolts. One thousand rivets will weigh 6 lbs ; one bundle of hoop steel will weigh 50 lbs . and contains 400 lineal feet.

Clinch Rivets or Nails.-These are special rivets or nails made of No. 9 Birmingham gage wire, which clinch around the edge of the angle iron or channel and are used for fastening the steel sheathing to steel purlins or girts. They are of the following lengths and widths.

Table of Clinch Nails.

| L Purlin leg Length No. per lb. | $\begin{gathered} 3^{\prime \prime \prime} \\ 5^{\prime \prime} \\ 3^{2} \end{gathered}$ | $\begin{gathered} 4^{\prime \prime \prime} \\ 6^{\prime \prime} \\ 29 \end{gathered}$ | $5^{\prime \prime}$ $7^{\prime \prime}$ 23 | $\begin{gathered} 6^{\prime \prime \prime} \\ 8^{\prime \prime} \\ 21 \end{gathered}$ | $7 \prime \prime$ $9^{\prime \prime}$ 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ᄃ Purlin leg Length No. per lb. | $\begin{aligned} & 3^{\prime \prime \prime} \\ & 6^{\prime \prime} \\ & 29 \end{aligned}$ | $7^{\prime \prime}{ }^{4 \prime}{ }^{\text {or }} 8^{\prime \prime} 8^{\prime \prime}$ |  | $6^{\prime \prime}$ $10^{\prime \prime}$ 16 | $\begin{aligned} & 7^{\prime \prime} \\ & \mathbf{1 1}^{\prime \prime} \\ & 14 \end{aligned}$ |

Order two rivets to each lineal foot of purlin or girt to which the corrugated steel is to be fastened and add 10 per cent for waste.

Clips and Bolts.-These are used for fastening corrugated steel to steel purlins or girts. Clips are made of No. 16, $11 / 2 \mathrm{in}$. steel, about $2^{1 / 2} \mathrm{in}$. long, and are slightly crimped at one end, to go over the flange of the purlin. The bolts are of the same diameter, and have the same head as the clinch rivets, except that they are supplied with threads and nut, and are about I in. long. These clips and bolts should not be used excepting in special cases, where the regular fastenings cannot be easily applied.

In cases where flashing, cornice work, and several thicknesses of metal are to be fastened at one point, rivets or bolts, other than standard lengths given will be needed. Closing rivets $1 / 2 \mathrm{in}$. long and bolts $\mathrm{I}^{1} / 2 \mathrm{in}$. long will usually answer these cases.

If side laps of corrugated steel are to be riveted, rivets should be ordered, one for each lineal foot of side lap, plus 20 per cent for waste.

If corrugated steel is to be fastened to wooden purlins or timber sheathing, order 8 d barbed nails for roofing and for siding. These nails should be spaced one foot apart, for both end and side laps; add 20 per cent for waste. 968 d barbed nails weigh I lb.

Corrugated steel for roofing should be laid with two corrugations side lap if standard or $\mathrm{I} 1 / 2$ corrugations side lap if special, and 6 in . end lap. Corrugated steel for siding should have one corrugation side lap and 4 in. end lap.

Louvres.-Weights of Shiffler louvres of black iron or steel are as follows:

## Gage No.

20
22

Weight per Square Foot.
2.7 lbs .
2.0 lbs .

The weight is obtained from Fig. 24, as follows :


Fig. 24. Touvres.

Louvres are estimated in square feet $=2 h \times$ length.
To get weight multiply area by (1. $7 \times$ weight per sq. ft. of flat of material used).

Ridge Roll.-Ridge roll is ordinarily of same gage as roofing and black or
galvanized to correspond with same. Ridge roll is usually made from an 18 in. flat sheet.

\left.| Gage No. | Wt. per lin. ft. |
| :--- | :--- |
| 20 | 2.4 lbs. |
| 22 | 2.0 |
| 24 | I. 6 lbs. |$\right\}$ Black Iron or Steel.

Gutters.-Eave or valley gutters should always be galvanized. Valley gutters should be No. 20 gage. Eave gutters and conductors No. 22 gage. Gutters should be sloped not less than I in. in 15 feet.

Weights of Eave Gutters and Conductors of Galv. Iron or Steel.

| Span of Roof. | Size of Gutter. | Wt. per ft. | Size and Spacing of Conductor. | Wt. per lin. ft. No. 22. |
| :---: | :---: | :---: | :---: | :---: |
| up to $50^{\prime}$ | $6^{\prime \prime}$, No. 22 | 1. 8 lbs. | 4 in. every $40^{\prime} \mathrm{o}^{\prime \prime}$ | 1.5 lbs . |
| 50 to $70^{\prime}$ | $77^{\prime \prime}$, No. 22 | r. 9 lbs. | 5 in . every $40^{\prime} \mathrm{o}^{\prime \prime}$ | I lbs |
| 70 to 100 | $8^{\prime \prime}$, No. 22 | 2.1 lbs. | 5 in . every $40^{\prime} \mathrm{o}^{\prime \prime}$ | 2.3 lbs . |

## CHAPTER IV.

## Design of Steel Structures.

Drawings.-Designs shall be made on standard sized sheets. A scale of $1 / 8 \mathrm{in}$. to I ft . shall be a minimum, a larger scale being used if practicable. Give such distances on both plan and cross-section that the dimensions of either can be understood without reference to the other.

## Designs of Mill Buildings.

Loads.-All roof loads, snow loads, wind loads, floor loads, wheel loads and spacing for cranes, and in case of bins, the weight per cubic foot and the angle of repose of the material shall appear on the design drawings.

Diagrams.-Draw as many sections as are necessary to show all transverse bents and trusses, a plan of lower chord bracing, and views to indicate framing and side views when necessary to give location of doors and windows. When a sectional view is shown, always mark the location of the sections on the plan. When two buildings frame into each other the design should always indicate the framing for the connections, drawing additional sections if required.

Stresses.-The stresses in all members of transverse bents, trusses and latticed and plate girders, and the loads on all main building columns shall be given on the design drawings. Give maximum bending moment and maximum shear in all crane girders, plate girders, and floor girders and columns. Maximum shear and bending moment shall be given for all stringers or I-Beams used as floor or crane girders.

Notes.-Material (whether O. H. (open hearth) or Bessemer, soft, medium or structural steel) ; specifications (name and date; size of rivets and holes, reamed or punched full size).

Angle Members.-In all cases where two unequal legged angles are used as main members, show the direction in which the outstanding legs are turned by giving the dimension of the leg appearing in elevation, or by exaggerating the longer leg.

Sections.-Give sections of all members used in the structure. Whenever two or more columns or other members in different locations have the same section, either note it, or mark the section on each one. For a column of special .make-up show a cross section.

Dimensions.-The following dimensions should be given: (1) Height of lower chord of trusses from floor level; (2) elevation of top of crane rail with clearance; (3) distance c. to c. of crane rail with clearance; (4) distance b. to b. of angles of all main columns; (5) pitch of trusses or height of same at heel and slope of upper chord; (6) width and height of ventilator; (7) length of bays; (8) distance c. to c. of building columns; (9) location and size of stacks; (io) location and size of openings and circular ventilators; (II) thickness of all walls, and relation to center line of columns.

Windows.-Give size and number of lights and height of windows. Show location of all windows. State whether pivoted, sliding, counter-balanced or fixed, and whether continuous. State kind of glass.

Doors.-Give dimensions (width by height) and state whether wood or steel, swinging, lifting, rolling or sliding. State style of track, hangers and latch.

Louvres.-Note depth on design, and whether wood or metal, fixed or pivoted. If metal give gage and kind of same.

Corrugated Steel.-Give gage and kind of all corrugated sheeting, painted or galvanized; method of fastening, lining, etc.

Gutters and Conductors.-Show gutters, conductors and downspouts where necessary and give size and kind and thickness of metal, methods of fastening, etc.

Circular Ventilators.-Show location on design and note size and kind.
Roofing.-Give kind of roofing material, and thickness of sheathing when used.

Notes.-Note on design the section of: (a) Purlins and form where trussed; (b) girts; (c) sag rods; (d) lateral bracing; (e) end columns; (f) window posts; (g) door posts.

Connections.-In making a design be sure that all clearances and connections with adjoining structures are properly provided for and that all dimensions necessary for detailing of same are given on the design.

## Designs of Plate Girder Bridges.

Loads.-Give assumed dead, live and wind loads, and show diagram of wheel loads.

Diagram and Views.-Show an elevation of girder with stiffeners, a plan with lateral bracing, and a half end view and a half intermediate section.

Stresses.-Give maximum bending moments and maximum shears, maximum stresses, required and actual net area of flanges, noting number of rivets deducted, and required net and actual gross areas of webs.

Dimensions.-The following dimensions should appear on all plate girder designs. Distance $b$. to $b$. of end angles, or distance out to out of girders, c. to c. of bearings, back wall to back wall, or c. to c. of piers, b. to b. of flange angles, spacing of girders and track stringers, base of rail to masonry, end of steel to face of back wall, angle of skew if any, and grade of base of rail.

For girder bridges on curves give the curvature and super-elevation of outer rail and distance from top of masonry to base of low rail. Give elevation of grade and of masonry on a vertical line through center of end bearing.

Rivet Spacing.-Note on the elevation of girders the spacing of rivets connecting flange angles to web, changing spacing at stiffener points. Give number of rivets in single shear for end connections of all laterals and cross frames.

Shoes and Pedestals.-Give maximum reaction, required and actual area of masonry plate, with allowable pressure on masonry. Note size of bed plate, and show in position with location of holes for anchor bolts. Note size and number of rollers for expansion pedestal, and also whether pedestal is built, cast iron or steel.

Expansion Points.-Mark fixed and expansion points and show whether pedestals or bearing plates are to be used.

Stiffeners.-Show end and intermediate stiffeners on elevation of girder, giving sections and stating whether fillers are used, or stiffeners crimped.

Super-elevation.-If the bridge be on a curve, show how the super-elevation of the outer rail is to be cared for, whether by tapering ties, or changing height of pedestal or masonry plate.

Track.-Show track in place, noting such information as size and notching of ties and guard timbers and manner of connecting timber deck to the girder. For through girder always show clearance diagram with dimensions.

Notes.-(a) Material (whether O. H. (open hearth) or Bessemer, soft, medium or structural steel) ; (b) specifications (name and date); (c) size of rivets and holes, reamed or punched full size.

## Designs of Truss Bridges.

Loads.-Always give the following assumed loads on the stress sheets.
Dead Loads.- (a) Weight of track in lbs. per lin. ft. of track; (b) weight of trusses and bracing per lin. ft. of bridge; (c) weight of stringer and stringer bracing per lin. ft. of bridge; (d) weight of floor beams per lin. ft. of bridge.

## Live Load.-(Diagram of wheel loads.) <br> Wind Load.

Diagrams.-In general, the design shall show an elevation of the truss, plan of top lateral bracing, plan of bottom lateral bracing and stringer bracing, half end view showing portal, half intermediate view, or as many intermediate views as are necessary to show intermediate sway frames. The end view shall show track in place with information similar to that for plate girders. The design of a pin connected bridge shall show the sizes of pins and the arrangement of the members at all panel points.

Stresses.-Give the stresses in all members of trusses as follows: D. L. (Dead Load) ; L. L. (Live Load) ; I. (Impact) ; C. (Curvature) ; W. (Wind Stresses). Also total stresses.

Always use the minus sign for tensile stress and the plus sign for compressive stress. Compute and give traction stresses for viaduct towers.

For stringers and floor beams give the bending moment and shear and stresses in the same manner as for plate girders.

General Dimensions.-The most important dimensions are, number of panels and length, depth of truss at every panel point if upper chord is curved, distance c. to c. of trusses, distance base of rail to masonry, distance center of end pin to masonry, distance $c$. to $c$. of end pins and face to face of masonry, or $c$. to $c$. of piers. If the bridge be on a curve, give the degree and show direction of curvature, the distance of base of low rail to masonry, and the super-elevation of outer rail. Note that greater clearances are required on curves. Show the clearance line and line of base of rail in the elevation of truss.

Compression Members.-Give the actual unit stress, the allowable unit stress, radius of gyration, moment of inertia, actual and required area, eccentricity and cross-section.

Tension Members.-Give allowable and actual stresses, the required and actual net area. For built sections give number of holes deducted for rivets in obtaining net area, and radius of gyration.

Sections.-Give section of every member and thickness of all gusset plates. Always give size of lacing bars, and state whether single or double lacing is required.

Built Sections.-On all built sections give depth of section, and in using plate and angle sections, make the web $1 / 2^{\prime \prime}$ less in width than the depth of section.

Angles with Unequal Legs.-In any member composed of one or more angles with unequal legs, show clearly the direction in which the long or short leg is turned.

Rivets.-Note the number of rivets to be used for end connections of all members, and give the number of rivets in single shear required at end connection of track stringers.

Shoes or Pedestals.-Give maximum reaction, required and actual area of masonry plate, with allowable pressure on masonry. Note size of bed plate,
and show in position with location of holes for anchor bolts. Note size and number of rollers for expansion pedestal, and also whether pedestal is built, cast iron or steel.

Camber.-The amount of camber should be shown on the design.
Notes.-Same as for Plate Girders.

## CHAPTER V.

## Tables and Structural Standards. <br> Contents.

Table I. Standards for Lacing Bars.
Table 2. Standards for Rivets and Riveting.
Table 3. Standards for Riveting.
Table 4. Standards for Riveting.
Table 5. Standard Rivet Spacing for Caulking.
Table 6. Purlin Details.
Table 7. Carnegie I-Beams.
Table 8. Carnegie I-Beams.
Table 9. Carnegie Channels.
Table io. Carnegie Z-Bars.
Table ir. Weights of Angles.
Table 12. Areas of Angles.
Table 13. Upsets for Round and Square Bars.
Table 14. Clevises.
Table 15. Sleeve Nuts and Turnbuckles.
Table I6. Loop Bars.
Table 17. Eye-Bars.
Table 18. Bridge Pins with Lomas Nuts.
Table 19. Standard Cotter Pins.
Table 20. Standard Cast O. G. Washers.
Table 21. Allowable Bending Moment in Pins.
Table 22. Shearing and Bearing Value of Rivets.
Table 23. Areas to be Deducted from Plates.
Table 24. Buckle Plates.
Table 25. Typical Hand Cranes.
Table 26. Typical Electric Cranes.
Table 27. Table for Rivet Spacing.
Table 28. Table for Rivet Spacing.
Table 29. Anchor and Tie Rods.
Table 30. Channel Columns.

## TABLE 1.

## Standards for Lacing Bars.



MAXIMUM DISTANCE $\boldsymbol{c}$ IN FEET AND INCHES
for given thickness $t$ of Lace bar

|  | Single lacing |  | double lacing |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t=\frac{c}{40}$ | $t=\frac{c}{s o}$ | $t=\frac{c}{60}$ | $t=\frac{c}{75}$ |  |
| $\begin{aligned} & 7 / 8 \\ & 9 / 16 \\ & 1 / 2 \\ & 7 / 16 \end{aligned}$ | $\begin{aligned} & 2-1 \\ & 1-10 \frac{1}{2} \\ & 1-8 \\ & 1-5 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 2-7 \frac{1}{3} \\ & 2-4 \\ & 2-1 \\ & 1-9 \frac{3}{3} \end{aligned}$ | $3-1 \frac{1}{4}$ $2-9 \frac{3}{4}$ $2-6$ $2-2 \frac{1}{4}$ 2- | $\begin{aligned} & 3-10^{\frac{3}{4}} \\ & 3-6 \frac{1}{4} \\ & 3-1 \frac{1}{2} \\ & 2-8 \frac{8}{3} \end{aligned}$ | $\begin{aligned} & 5 / 8 \\ & 9 / 16 \\ & 1 / 2 \\ & 1 / 1 / 1 \end{aligned}$ |
| $\begin{aligned} & 3 / 8 \\ & 5 / 18 \\ & 1 / 6 \end{aligned}$ | $\begin{aligned} & 1-3 \\ & 1-0 \frac{1}{2} \\ & 0-10 \end{aligned}$ | $\begin{aligned} & 1-6 \frac{3}{1} \\ & 1-3 \frac{1}{2} \\ & 1-0 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 1-10 \frac{1}{2} \\ & 1-6 . \\ & 1-3 \end{aligned}$ | $\begin{aligned} & 2-4 \\ & 1-11 \frac{1}{2} \\ & 1-6 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 3 / 6 \\ & 5 / 16 \\ & 1 / 4 \end{aligned}$ |



DISTANCE IN INCHES TO BE ADDED TO LENGTH $c$

| For finished length a |  |  |  |  | FOR ORDERED LENGTH b |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WIDTH OF BAR INCHES <br> INCHES | $312^{\prime \prime}$ | $\begin{aligned} & \text { METE } \\ & 58_{8}^{\prime \prime} \end{aligned}$ | $\begin{aligned} & \text { RIVE } \\ & 3 / 4^{\prime \prime} \end{aligned}$ | $7 / 8^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | $58^{\prime \prime}$ | $\begin{aligned} & \text { FRIV } \\ & 2 / 4^{\prime \prime} \end{aligned}$ | $78^{\prime \prime}$ | $\begin{aligned} & \text { WIOTHAR } \\ & \text { OFBHE } \\ & \text { INGESES } \end{aligned}$ |
| $\begin{aligned} & 3 \\ & 2^{3 / 4} \\ & 21 / 2 \\ & 21 / 2 \end{aligned}$ |  |  | 2\% ${ }^{2 \frac{5}{4}}$ | 31 31 31 $3!$ |  |  | 31 | 37 37 36 37 37 | 3 <br> $23 / 4$ <br> 21.2 <br> $21 / 4$ |
| $\begin{aligned} & 2 \\ & 12 / 4 \\ & 13 / 2 \end{aligned}$ | $\begin{aligned} & 17 \\ & 17 \\ & 17 \end{aligned}$ | 21 21 | $2 \%$ |  | $2 \frac{1}{8}$ <br> $2 \frac{8}{8}$ | 27 27 | 31 |  | $\begin{aligned} & 2 \\ & 13 / 4 \\ & 11 / 2 \end{aligned}$ |

TABLE 2.
Standards for Rivets and Riveting.

|  |  |  |  |  |  |  | PROPORTIONS OF RIVETS in inches |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Leg | Gage | $\begin{aligned} & \text { Max. } \\ & \text { Rivet } \end{aligned}$ | Leg | $\begin{gathered} \text { Gage } \\ g_{1} \end{gathered}$ |  |  |  |  |  |  |  |  |  |
| 8 | $4 \frac{1}{2}$ | $\frac{7}{8}$ | 8 | 3 | 3 | $\frac{7}{8}$ | $\begin{gathered} \text { Oiameter } \\ \text { of } \\ \text { Shank } \\ d \end{gathered}$ | full Head |  |  |  | Gountersunk |  |
| 7 | 4 | $\frac{7}{8}$ | 7 | $2 \frac{1}{2}$ | 3 | $\frac{7}{8}$ |  |  |  |  |  |  |  |
| 6 | $3 \frac{1}{2}$ | $\frac{7}{8}$ | 6 | $2 \frac{1}{4}$ | $2 \frac{1}{4}$ | $\frac{7}{8}$ |  | $\begin{array}{\|c\|c\|} \hline \text { Diameter Height } \\ a & b \\ \hline \end{array}$ |  | Radii |  | Diameter Depth |  |
| 5 | 3 | $\frac{7}{8}$ | 5 | 2 | $1 \frac{3}{4}$ | 8 | / | $1 \frac{5}{8}$ | $\frac{11}{16}$ | $\frac{11}{16}$ | $1 \frac{1}{32}$ | $1 \frac{9}{16}$ | 2 |
| 4 | $2 \frac{1}{2}$ | $\frac{7}{8}$ | When 6"Lexceeds $\frac{3}{4}{ }^{\prime \prime}$ |  |  |  | $\frac{7}{8}$ | $1 \frac{7}{16}$ | $\frac{39}{64}$ | $\frac{39}{64}$, | $\frac{59}{64}$ | $1 \frac{3}{8}$ | $\frac{7}{16}$ |
| $3 \frac{1}{2}$ | 2 | $\frac{7}{8}$ | 6 | $2 \frac{1}{2}$ | 2 | $\frac{7}{8}$ | 4 | $1 \frac{1}{4}$ | $\frac{17}{32}$ | $\frac{17}{32}$ | $\frac{51}{64}$ | $1 / 16$ | $\frac{3}{8}$ |
| 3 | $1 \frac{3}{4}$ | $\frac{7}{8}$ | MINIMUM RIVET SPACING |  |  |  | $\frac{5}{8}$ | 16 | $\frac{29}{64}$ | $\frac{29}{64}$ | $\frac{43}{64}$ | 1 | $\frac{5}{16}$ |
| $2 \frac{3}{4}$ | $1 \frac{5}{8}$ | $\frac{3}{4}$ |  |  |  |  | 2 | $\frac{7}{8}$ | $\frac{3}{8}$ | $\frac{3}{8}$ | $\frac{9}{16}$ | 32 | $\frac{1}{4}$ |
| 2 | $1 \frac{3}{8}$ | $\frac{3}{4}$ | Size of River Min. Distance inches inches |  |  |  | 3 | $\frac{11}{16}$ | $\frac{19}{64}$ | $\frac{19}{64}$ | $\frac{7}{16}$ | $\frac{19}{32}$ | $\frac{3}{16}$ |
| $2 \frac{1}{4}$ | $1 \frac{1}{4}$ | $\frac{5}{8}$ |  |  |  |  | MINIMUM STAGGER FOR RIVETS |  |  |  |  |  |  |
| 2 | $1 \frac{1}{8}$ | $\frac{5}{8}$ |  |  |  |  |  |  |  |  | 6 in inches |  |  |
| $1 \frac{3}{4}$ | 1 | $\frac{1}{2}$ |  |  |  |  |  |  |  |  | $\frac{\text { in inc }}{r^{\frac{3}{4}} \text { Rivet }}$ |  |
| $1 \frac{1}{2}$. | $\frac{7}{8}$ | $\frac{3}{8}$ |  |  |  |  | $\rightarrow 6 R_{i} \sigma^{2}$ |  |  |  |  |  | $a=1^{\prime \prime \prime}$ |
| $1 \frac{3}{8}$ | $\frac{7}{8}$ | $\frac{3}{8}$ |  |  |  |  | $c$ <br> inches | $b$ in inches |  |  | $1 \frac{5}{16}$ |  | $1 \frac{1}{16}$ | 1/5 |
| $1 \frac{1}{4}$ | $\frac{3}{4}$ | $\frac{3}{8}$ | $\frac{3}{8}$ |  | $1 \frac{1}{4}$ |  |  |  |  | $1 \frac{3}{8}$ |  | $\frac{15}{16}$ | $1 \frac{1}{4}$ |
| 1 | $\frac{5}{8}$ | $\frac{1}{4}$ |  |  |  |  |  | $\begin{array}{\|l\|l\|} \hline \text { or } 3^{\prime \prime} \text { Rivep } & \text { For } \frac{7}{8} \text { Riveet } \\ \alpha=1 \frac{1}{8} & \alpha=1 \frac{1}{4}{ }^{\prime \prime} \end{array}$ |  | $1 \frac{7}{16}$ |  | $\frac{7}{8}$ | $1 \frac{3}{16}$ |
| MINIMUM BUTTON SETS For $\frac{3^{\prime \prime}}{4}$ and ${ }_{1}{ }^{\frac{7}{\beta}}$ Rivets $1<-2 \frac{1}{4} \rightarrow 1$ For Rivetsless than $\frac{3}{4}$ |  |  | $\begin{aligned} & \text { STANDARD } \\ & \text { CLEARANCE } \\ & \text { FOR RIVETING } \end{aligned}$ |  |  |  | $1 \frac{1}{8}$ | $1 \frac{1}{4}$ | $1 \frac{1}{2}$ | $1 \frac{1}{2}$ |  | 4 | $\frac{1}{8}$ |
|  |  |  | $1 \frac{3}{16}$ | $1 \frac{3}{16}$ | $1 \frac{7}{16}$ | $1 \frac{9}{16}$ |  | $\frac{9}{16}$ |  |  |  |  |
|  |  |  | $1 \frac{1}{4}$ | $1 \frac{1}{8}$ | $1 \frac{3}{8}$ | $1 \frac{5}{8}$ |  | $\frac{3}{8}$ | $\frac{15}{16}$ |  |  |  |
|  |  |  |  |  |  |  | RIVETS IN CRIMPED LS |  |  | 176 |  | 0 | $\frac{13}{16}$ |
|  |  |  |  |  |  |  | $\rightarrow x_{b} k$ |  |  | 4 |  |  | $\frac{5}{8}$ |
|  |  |  |  | $1 \frac{13}{16}$ |  |  | $\frac{7}{16}$ |  |  |  |  |  |
|  |  |  |  | $1 \frac{7}{8}$ |  |  | 0 |  |  |  |  |  |

TABLE 3.
Standards for Riveting.


TABLE 4.
Standards for Riveting.


TABLE 5.

## Stanoard Rivet Spacing for Cauling



| THICKNESS | $\frac{3^{\prime \prime}}{8} \text { RIVETS }$ |  |  |  | $\frac{1}{2} \text { "RIVETS }$ |  |  |  | $\frac{5^{\prime \prime}}{8} \text { RIVETS }$ |  |  |  | $\frac{3}{4}^{\prime \prime}$ RIVETS |  |  |  | $\frac{7}{8}$ "RIVETS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OF PLATE | H | $B$ | $C$ | $D$ | $A$ | $B$ | $C$ | 0 | $A$ | $B$ | $C$ | $\square$ | $A$ | $B$ | $C$ | $\square$ | H | $B$ | $C$ | $D$ |
| $\frac{1}{8}^{n}$ | $1 \frac{1}{4}$ | $\frac{5}{8}$ | 2 | $/$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\frac{3}{16}^{\prime \prime}$ | $1 \frac{1}{2}$ | $\frac{3}{4}$ | $2 \frac{1}{4}$ | $1 \frac{1}{4}$ | $1 \frac{5}{8}$ | $\frac{3}{4}$ | $2 \frac{1}{4}$ | $1 \frac{3}{8}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| $\frac{1}{4}^{\prime \prime}$ | $1 \frac{1}{2}$ | $\frac{3}{4}$ | $2 \frac{1}{4}$ | $1 \frac{1}{4}$ | $1 \frac{3}{4}$ | $\frac{7}{8}$ | $2 \frac{1}{2}$ | $1 \frac{1}{2}$ | $1 \frac{7}{8}$ | / | $2 \frac{5}{8}$ | $1 \frac{5}{8}$ | 2 | $1 \frac{1}{8}$ | $2 \frac{3}{4}$ | $1 \frac{3}{4}$ |  |  |  |  |
| $\frac{5}{16}$ |  |  |  |  | $1 \frac{3}{4}$ | $\frac{7}{8}$ | $2 \frac{1}{2}$ | $1 \frac{1}{2}$ | 2 | 1 | $2 \frac{3}{4}$ | $1 \frac{3}{4}$ | $2 \frac{1}{8}$ | $1 \frac{1}{8}$ | $2 \frac{7}{8}$ | $1 \frac{7}{8}$ |  |  |  |  |
| $\frac{3}{8}^{\prime \prime}$ |  |  |  |  | $1 \frac{7}{8}$ | / | $2 \frac{5}{8}$ | $1 \frac{1}{2}$ | 2 | / | $2 \frac{3}{4}$ | $1 \frac{3}{4}$ | $2 \frac{1}{4}$ | $1 \frac{1}{8}$ | 3 | 2 | $2 \frac{3}{8}$ | $1 \frac{1}{4}$ | $3 \frac{1}{8}$ | $2 \frac{1}{8}$ |
| $\frac{7}{16}^{\prime \prime}$ |  |  | * |  |  |  |  |  | $2 \frac{1}{8}$ | $/$ | $2 \frac{7}{8}$ | $1 \frac{3}{4}$ | $2 \frac{1}{4}$ | $1 \frac{1}{8}$ | 3 | 2 | $2 \frac{3}{8}$ | $1 \frac{3}{8}$ | $3 \frac{1}{4}$ | $2 \frac{1}{4}$ |
| $\frac{1}{2}^{\prime \prime}$ |  |  |  |  |  |  |  |  | $2 \frac{1}{4}$ | $1 \frac{1}{8}$ | 3 | $1 \frac{7}{8}$ | $2 \frac{3}{8}$ | $1 \frac{1}{4}$ | $3 \frac{1}{8}$ | $2 \frac{1}{8}$ | $2 \frac{1}{2}$ | $1 \frac{1}{2}$ | $3 \frac{1}{4}$ | $2 \frac{1}{4}$ |
| $\frac{5}{8}^{\prime \prime}$ |  |  |  |  |  |  |  |  |  |  |  |  | $2 \frac{1}{2}$ | $1 \frac{1}{4}$ | $3 \frac{1}{4}$ | $2 \frac{1}{8}$ | $2 \frac{5}{8}$ | $1 \frac{1}{2}$ | $3 \frac{3}{8}$ | $2 \frac{1}{4}$ |
| $3^{\prime \prime}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE 6.
Purlin Details.


TABLE 7.
Carnegie I-Beams.


TABLE 8.
Carnegie I-Beams.


## TABLE 9.

Carnegie Channels．

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left\lvert\, \begin{gathered} \left.\begin{array}{c} \text { ceiont } \\ \text { fef } \\ \text { foor } \end{array} \right\rvert\, \end{gathered}\right.$ | tunge | WEE | $g$ | $\begin{gathered} \text { талат. } \\ \boldsymbol{t} \end{gathered}$ | $\begin{gathered} \text { oirr. } \\ \boldsymbol{Z} \end{gathered}$ | $\underset{b}{\text { ourp }}$ | $\begin{aligned} & \text { MAK } \\ & \text { hitr } \\ & \text { eat } \\ & \text { eat } \end{aligned}$ | owr. | anves <br> $f$ | $\begin{gathered} \text { оит. } \\ \boldsymbol{s} \end{gathered}$ | oist． <br> c |  |  |
| 15 | $\begin{array}{\|l\|} \hline 55.00 \\ 50.00 \\ 45.00 \\ 40.00 \\ 35.00 \\ 33.00 \end{array}$ |  |  |  |  | $\begin{aligned} & \hline 17 \\ & " \\ & " \\ & " . \\ & " . \end{aligned}$ |  | $\frac{3}{4}$ |  |  | $\begin{aligned} & 3 \frac{1}{8} \\ & 3 \frac{1}{4} \\ & 3 \frac{1}{4} \\ & 3 \\ & 2 \frac{18}{10} \\ & 2 \frac{10}{6} \\ & 2 \frac{10}{6} \end{aligned}$ | $\begin{aligned} & \hline \frac{2}{2} \\ & \frac{1}{60} \\ & \frac{12}{6} \\ & \frac{6}{6} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$ | 55.00 50.00 45.00 40.00 35.00 33.00 | 15 |
| 12 | 40.00 35.00 30.00 25.00 20.50 |  | $\left.\begin{aligned} & \frac{3}{4} \\ & \frac{3}{6} \\ & \frac{1}{2} \\ & \frac{32}{32} \\ & \frac{3}{30} \end{aligned} \right\rvert\,$ |  |  |  |  | $\frac{3}{4}$ | $1 \frac{13}{3,}$ |  | $\begin{aligned} & 3 \frac{1}{6} \\ & 3 \frac{1}{6} \\ & 3 \\ & 2 \frac{7}{8} \\ & 2 \frac{18}{616} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 40.00 \\ & 35.00 \\ & 30.00 \\ & 25.00 \\ & 20.50 \end{aligned}$ | 12 |
| 10 | 35.00 30.00 25.00 20.00 15.00 |  | $\left.\begin{array}{\|c} \frac{10}{10} \\ \frac{12}{18} \\ \frac{12}{20} \\ \frac{4}{6} \\ \frac{1}{6} \end{array} \right\rvert\,$ | $1 \frac{1}{2}$ | 8！ |  |  | $\frac{3}{4}$ |  |  | $\begin{aligned} & 3 \frac{1}{10} \\ & 3^{\frac{1}{10}} \\ & 3 \frac{1}{10} \\ & 2 \frac{7}{6} \\ & 2 \frac{1}{4} \end{aligned}$ | $\begin{aligned} & \frac{2}{6} \\ & \frac{4}{6} \\ & \frac{1}{6} \\ & \frac{7}{20} \\ & \frac{1}{21} \end{aligned}$ | 35.00 30.00 25.00 20.00 15.00 | 10 |
| 9 | 25.00 20.00 15.00 13.25 | $\begin{aligned} & 2^{101} \\ & 2^{\frac{21}{31}} \\ & 2^{\frac{1}{2}} \\ & 2^{\frac{7}{16}} \end{aligned}$ | $\begin{array}{l\|} \hline \frac{1}{6} \\ \frac{7}{10} \\ \frac{9}{31} \\ \frac{9}{30} \\ \hline \end{array}$ |  |  | $\begin{aligned} & \frac{7}{6} \\ & \text { " } \\ & \hline \text {. } \end{aligned}$ |  | $\frac{3}{4}$ | $\begin{aligned} & 1 \frac{1}{6} \\ & " . \end{aligned}$ |  |  | $\begin{aligned} & \text { 낳ㄹ } \\ & \frac{1}{8} \\ & \frac{1}{6} \\ & \frac{8}{88} \end{aligned}$ | $\begin{aligned} & 25.00 \\ & 20.00 \\ & 15.00 \\ & 13.25 \\ & \hline \end{aligned}$ | 9 |
| 8 | 21.25 <br> 18.75 <br> 18.25 <br> 13.75 <br> 11.25 |  | $\begin{array}{\|c\|} \hline \frac{8}{16} \\ \frac{1}{2} \\ \frac{30}{32} \\ \frac{5}{10} \\ \frac{7}{50} \\ \hline \end{array}$ | $\begin{aligned} & 1! \\ & 14 \\ & " 1 \\ & 19 \end{aligned}$ | $6 \frac{1}{6}$ |  |  | $\frac{3}{4}$ |  |  | $\begin{aligned} & 3 \frac{1}{16} \\ & 3 \\ & 2^{\frac{2}{6}} \\ & 2^{\frac{19}{10}} \\ & 2^{\frac{3}{4}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{1}{6} \\ & \frac{2}{10} \\ & \frac{2}{10} \\ & \frac{1}{5} \\ & \frac{1}{16} \end{aligned}$ | 21.25 <br> 18.75 <br> 16.25 <br> 13.75 <br> 11.25 | 8 |
| 7 | $\begin{array}{\|r\|} \hline 19.75 \\ 17.25 \\ 14.75 \\ 12.25 \\ 9.75 \\ \hline \end{array}$ | $\begin{aligned} & 2^{\frac{1}{2}} \\ & 2^{\frac{13}{23}} \\ & 2^{\frac{5}{18}} \\ & 2^{\frac{3}{81}} \\ & 2^{\frac{3}{23}} \end{aligned}$ | $\begin{array}{\|c\|} \hline \frac{4}{8} \\ \frac{12}{30} \\ \frac{72}{70} \\ \frac{5}{10} \\ \frac{7}{35} \\ \hline \end{array}$ | ${ }^{\frac{1}{2}}$ | 51 |  |  | $\stackrel{3}{8}$ | ${ }^{1 \frac{1}{10}}$ |  |  | $\begin{aligned} & \frac{12}{10} \\ & \frac{12}{16} \\ & \frac{1}{3} \\ & \frac{1}{6} \\ & \frac{2}{4} \\ & \hline \end{aligned}$ | $\begin{array}{\|r\|} \hline 19.75 \\ 17.25 \\ 14.75 \\ 12.25 \\ 9.75 \\ \hline \end{array}$ | y |
| 6 | 15.50 <br> 13.00 <br> 10.50 <br> 8.00 <br> 11.50 |  | $\begin{array}{\|c\|} \hline \frac{9}{10} \\ \frac{2}{10} \\ \frac{1}{10} \\ \frac{0}{10} \\ \hline \end{array}$ | 13 | $4 \frac{1}{2}$ |  | $\begin{aligned} & " 4 \\ & " 4 \end{aligned}$ | $\frac{8}{8}$ |  | $\begin{aligned} & 1 \frac{1}{2} \\ & 1 \frac{3}{6} \\ & 1 \frac{1}{6} \\ & 1 \frac{1}{6} \\ & \hline \end{aligned}$ |  |  | $\begin{array}{\|r\|} \hline 15.50 \\ 13.00 \\ 10.50 \\ 8.00 \\ \hline \end{array}$ | 6 |
| 5 | $\begin{array}{\|r\|} \hline 11.50 \\ 9.00 \\ 6.50 \\ \hline \end{array}$ | $\begin{aligned} & 2^{\frac{1}{32}} \\ & 13 \frac{1}{3} \\ & 1 \frac{1}{4} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \frac{30}{32} \\ \frac{30}{30} \\ \frac{2}{10} \\ \hline .8 \\ \hline \end{array}$ |  | $3 \frac{3}{4}$ | $\begin{aligned} & \frac{5}{6} \\ & \hline 10 \end{aligned}$ | $\frac{10}{16}$ | $\frac{1}{2}$ | $\begin{aligned} & \frac{7}{6} \\ & \hline . \end{aligned}$ |  | $\begin{aligned} & 3 \\ & 29 \\ & 2 \frac{13}{60} \\ & 22_{18}^{48} \end{aligned}$ | $\begin{aligned} & \frac{2}{21} \\ & \frac{4}{6} \\ & \frac{1}{6} \end{aligned}$ | $\begin{array}{\|r\|} \hline 11.50 \\ 9: 00 \\ 6.50 \\ \hline \end{array}$ | 5 |
| 6 | $\begin{aligned} & 7.25 \\ & 6.25 \\ & 5: 25 \\ & \hline \end{aligned}$ |  | $\left.\begin{array}{l\|} \hline \frac{i}{10} \\ \frac{1}{4} \\ 10 \end{array} \right\rvert\,$ | $1$ | $24$ | $\begin{aligned} & \square+ \\ & 0 \end{aligned}$ | ＂． | $\frac{1}{2}$ | $\begin{aligned} & \frac{5}{4} \\ & 4 \end{aligned}$ | $\begin{aligned} & 1 \frac{1}{106} \\ & 1 \\ & \frac{10}{10} \end{aligned}$ | $\begin{aligned} & 2 \frac{10}{210} \\ & 2 \frac{1}{4} \\ & 2 \frac{1}{18} \end{aligned}$ | $\begin{aligned} & \frac{4}{8} \\ & \frac{3}{10} \\ & \frac{1}{6} \end{aligned}$ | $\begin{aligned} & 7.25 \\ & 6.25 \\ & 5.25 \end{aligned}$ | 4 |
| 3 | $\begin{aligned} & \hline 6.00 \\ & 5.00 \\ & 4.00 \\ & \hline \end{aligned}$ | $\begin{aligned} & 18 \\ & 1 \frac{18}{2} \\ & 1 \frac{1}{2} \\ & 13{ }^{30} 5 \\ & \hline \end{aligned}$ | （1） | $\stackrel{\square}{6}$ | 18． | $\stackrel{4}{4}$ | $\stackrel{1}{\square}$ | $\frac{1}{2}$ | － |  | $\begin{aligned} & 2^{\frac{2}{6}} \\ & 22^{\frac{1}{6}} \\ & 22_{10}^{10} \end{aligned}$ | \％ | $\begin{aligned} & 6.00 \\ & 5.00 \\ & 4.00 \\ & \hline \end{aligned}$ | 3 |

TABLE 10.
Carnegie Z－Bars．

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| （Nomimal | Trucruess | Actual size | $\begin{gathered} \text { Welortr } \\ \text { per } \\ \text { foot } \end{gathered}$ |  | $\begin{gathered} \text { Quves. } \\ \boldsymbol{c} \end{gathered}$ | ${ }_{\text {un }}$ | $6^{\text {a }}$ | $\begin{gathered} \text { anves } \\ \sigma^{a} \end{gathered}$ | Truckeses | Momize |
| 3 | $\begin{aligned} & \frac{1}{18} \\ & \frac{1}{18} \\ & \frac{3}{8} \\ & \frac{3}{18} \\ & \frac{7}{16} \\ & \frac{1}{2} \\ & \frac{20}{10} \end{aligned}$ |  | $\begin{array}{r} \hline 6.7 \\ 8.4 \\ 9.7 \\ 11.4 \\ 12.5 \\ 14.2 \end{array}$ | 1.87 2.48 2.88 3.38 3.68 4.18 | $14$ | $\frac{3}{2}$ |  |  | $\begin{aligned} & \frac{1}{4} \\ & \frac{1}{10} \\ & \frac{2}{81} \\ & \frac{8}{81} \\ & \frac{7}{18} \\ & \frac{1}{2} \\ & \frac{10}{16} \end{aligned}$ | 3 |
| 4 | $\begin{aligned} & \frac{7}{4} \\ & \frac{5}{16} \\ & \frac{8}{16} \\ & \frac{8}{8} \\ & \frac{7}{16} \\ & \frac{1}{2} \\ & \frac{8}{16} \\ & \frac{6}{8} \\ & \frac{14}{18} \\ & \frac{8}{4} \end{aligned}$ |  |  <br> 8.2 <br> 10.3 <br> 12.4 <br> 18.8 <br> 15.8 <br> 17.8 <br> 18.9 <br> 20.8 <br> 22.8 | $\begin{aligned} & 2.41 \\ & 3.10 \\ & 3.86 \\ & 4.05 \\ & 4.88 \\ & 5.27 \\ & 5.55 \\ & 6.14 \\ & 6.75 \end{aligned}$ |  |  | $\frac{7}{8}$ |  | $\begin{aligned} & \frac{7}{4} \\ & \frac{5}{10} \\ & \frac{2}{8} \\ & \frac{1}{10} \\ & \frac{1}{2} \\ & \frac{8}{18} \\ & \frac{8}{81} \\ & \frac{11}{16} \\ & \frac{8}{4} \end{aligned}$ | 4 |
| 5 |  |  | $\begin{aligned} & 11.8 \\ & 13.9 \\ & 16.4 \\ & 17.8 \\ & 20.2 \\ & 22.6 \\ & 23.7 \\ & 28.0 \\ & 28.3 \end{aligned}$ | 3.40 410 481 5.25 5.94 6.64 6.88 7.84 8.33 |  |  |  | $2 \frac{1}{1}$ |  | 5 |
| 6 | $\begin{aligned} & \frac{3}{8} \\ & \frac{7}{10} \\ & \frac{7}{10} \\ & \frac{1}{2} \\ & \frac{8}{88} \\ & \frac{\pi}{8} \\ & \frac{\pi}{8} \\ & \frac{4}{4} \\ & \frac{4}{4} \\ & \frac{7}{8} \end{aligned}$ |  | $\begin{aligned} & 15.8 \\ & 18.3 \\ & 21.0 \\ & 227 \\ & 254 . \\ & 28.0 \\ & 29.3 \\ & 320 \\ & 340 \end{aligned}$ |  <br> 4.59 <br> 6.39 <br> 6.19 <br> 6.68 <br> 743 <br> 8.25 <br> 8.83 <br> 9.40 <br> 10.17 |  |  | $\frac{7}{8}$ |  | $\begin{aligned} & \frac{3}{36} \\ & \frac{7}{70} \\ & \frac{1}{2} \\ & \frac{1}{20} \\ & \frac{9}{28} \\ & \frac{5}{16} \\ & \frac{10}{16} \\ & \frac{3}{4} \\ & \frac{13}{18} \\ & \frac{7}{8} \end{aligned}$ | 6 |

TABLE II.
Carnegie Angles.
Weight in pounds per lineal foot.

| WEIGHTS OF ANGLES <br> Ati dimencione in inches |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SIZE | $\frac{1}{8}$ | $\frac{3}{16}$ | $\frac{1}{4}$ | $\frac{5}{16}$ | $\frac{3}{8}$ | $\frac{7}{16}$ | $\frac{1}{2}$ | $\frac{9}{16}$. | $\frac{8}{8}$ | $\frac{11}{16}$ | $\frac{3}{4}$ | $\frac{13}{16}$ | $\frac{7}{8}$ | $\frac{15}{16}$ | 1 | $1 \frac{1}{16}$ | $1 \frac{1}{8}$ | SIzE |
|  | $\begin{aligned} & 12 \\ & 10 \\ & 0.8 \end{aligned}$ | $\left.\begin{array}{\|l\|} 3.1 \\ 2.8 \\ 2.5 \\ 2.1 \\ 1.8 \\ 1.5 \\ 1.2 \end{array} \right\rvert\,$ | $\begin{aligned} & 4.9 \\ & 4.5 \\ & 4.0 \\ & 3.7 \\ & 3.2 \\ & 2.8 \\ & 2.4 \\ & 1.9 \\ & 1.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 8.2 \\ 7.1 \\ 6.1 \\ 5.5 \\ 5.0 \\ 4.5 \\ 4.0 \\ 3.4 \\ 2.9 \\ 2.4 \\ \hline \end{array}$ | $\begin{array}{\|c\|} 14.8 \\ 12.3 \\ 9.8 \\ 8.5 \\ 7.2 \\ 6.6 \\ 5.9 \\ 5.3 \\ 4.7 \\ 4.0 \\ 3.4 \end{array}$ | 17.2 14.3 11.3 9.8 8.3 7.6 6.8 6.1 5.3 4.6 | 26.4 19.6 16.2 12.8 11.1 9.4 8.5 7.7 6.8 | $\begin{array}{\|l\|} \hline 29.5 \\ 21.8 \\ 18.1 \\ 14.3 \\ 12.3 \\ 10.4 \\ \hline \end{array}$ | $\begin{array}{\|} 32.7 \\ 24.2 \\ 20.0 \\ 15.7 \\ 13.6 \\ 11.4 \end{array}$ | $\begin{aligned} & 35.8 \\ & 26.5 \\ & 21.8 \\ & 17.1 \\ & 14.8 \end{aligned}$ | $\begin{array}{\|l\|} \hline 38.9 \\ 28.7 \\ \hline 23.6 \\ \hline 18.5 \\ \hline 18.0 \\ \hline \end{array}$ |  | $\begin{array}{\|l\|} \hline 45.0 \\ 33.1 \\ 27.2 \end{array}$ | $\begin{aligned} & 48.0 \\ & 35.3 \\ & 28.9 \end{aligned}$ | $\begin{array}{\|l\|} \hline 51.0 \\ 37.4 \\ 30.6 \end{array}$ | 54.0 | 56.9 | $\begin{aligned} & 8 \\ & 8 \end{aligned} \times 88$ |
| Stze | $\frac{1}{8}$ | $\frac{3}{16}$ | $\frac{1}{4}$ | $\frac{5}{16}$ | $\frac{3}{8}$ | $\frac{7}{16}$ | $\frac{1^{2}}{2}$ | $\frac{9}{16}$ | $\frac{6}{8}$ | $\frac{11}{16}$ | $\frac{3}{4}$ | $\frac{13}{16}$ | $\frac{7}{8}$ | $\frac{15}{16}$ | 1 | $1 \frac{1}{16}$ | $1 \frac{1}{8}$ | SIZE |
|  |  | 2.8 | 4.9 <br> 4.5 <br> 40 <br> 3.7 | 8.7 8.2 7.7 7.1 6.6 6.1 5.5 5.0 4.5 | $\begin{array}{\|c\|} 12.3 \\ 11.7 \\ 11.0 \\ 10.4 \\ 9.8 \\ 9.1 \\ 8.5 \\ 7.8 \\ 7.2 \\ 6.6 \\ 5.9 \\ 5.3 \end{array}$ | 15.0 14.3 13.5 12.8 12.0 11.3 10.5 9.8 9.1 8.3 7.6 6.8 6.1 | 17.0  <br> 16.2  <br> 15.3  <br> 145  <br> 13.6  <br> 12.8 1 <br> 11.9 1 <br> 11.2  <br> 10.2 1 <br> 9.4 1 <br> 8.5  <br> 7.7  <br> 6.8  | $\begin{aligned} & 19.0 \\ & 18.3 \\ & 17.1 \\ & 16.2 \\ & 15.2 \\ & 14.2 \\ & 13.3 \\ & 12.3 \\ & 11.4 \\ & 10.4 \\ & 9.5 \end{aligned}$ | $\begin{aligned} & 21.0 \\ & 20.0 \\ & 18.9 \\ & 17.8 \\ & 16.8 \\ & 15.7 \\ & 14.6 \\ & 13.6 \\ & 12.5 \\ & 11.4 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 23.0 \\ & 21.8 \\ & 20.6 \\ & 19.5 \\ & 18.3 \\ & 17.1 \\ & 15.9 \\ & 148 \\ & 13.6 \\ & 12.4 \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & 24.9 \\ & 23.6 \\ & 22.3 \\ & 21.1 \\ & 19.8 \\ & 18.5 \\ & 17.2 \\ & 16.0 \\ & 14.7 \end{aligned}\right.$ | $\begin{aligned} & 26.8 \\ & 25.4 \\ & 24.0 \\ & 22.6 \\ & 21.3 \\ & 19.9 \\ & 18.5 \\ & 17.1 \\ & 15 . \end{aligned}$ | $\left\|\begin{array}{l} 28.7 \\ 27.2 \\ 25.7 \\ 24.2 \\ 22.7 \end{array}\right\|$ | $\begin{aligned} & 30.5 \\ & 28.9 \\ & 27.3 \end{aligned}$ | $\left\|\begin{array}{l} 32.3 \\ 30.8 \\ 28.8 \end{array}\right\|$ |  |  |  |
| SIZE | $\frac{1}{8}$ | $\frac{3}{26}$ | $\frac{1}{4}$ | $\frac{8}{16}$ | $\frac{3}{8}$ | $\frac{7}{16}$ | $\frac{1}{2}$ | $\frac{9}{16}$ | $\frac{5}{8}$ | $\frac{11}{16}$ | 3 | $\frac{13}{16}$ | $\frac{7}{8}$ | $\frac{15}{16}$ | 1 | $1{ }_{16}^{16}$ | $1^{\frac{1}{3}}$ | S12 |

Angles marked * are special

TABLE 12.
Carnegie Angles.
Areas in Square Inches.


Angies marked * are special.

TABLE 13.
Upsets for Round and Square Bars.

| Rouno |  | OUND | BARS |  |  |  | SQuARE |  |  | BARS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | UPSET |  |  |  |  | UPSET |  |  |  |  | square |  |
| onm. | anca | мам. | Lenotm | 100 |  | ${ }_{\substack{\text { Excess } \\ \text { AnEA }}}$ | (xxeses | At noter | 100 | Lenotm | оим. | amen | orm. |
| mence | -0, ma. | тенея | mente | 'mento | co.me. | \% | \% | so.mens. | mento | menes | menes | coume. | mense |
| $\frac{8}{8}$ | 0.307 | $\div$ | 4 | 4 $\frac{1}{3}$ | 0.420 | 36.8 |  |  |  |  |  |  | $\frac{8}{8}$ |
| $\stackrel{3}{4}$ | 0.442 | 1 | 4 | 3\% | 0.550 | 24.4 | 206 | 0.694 | $3 \frac{1}{3}$ | 4 | 1\% | 0.563 | 3 |
| $\frac{7}{8}$ | 0.601 | $1 \frac{1}{4}$ | 4 | 5 | 0.891 | 48.3 | 16.3 | 0.891 | 4 | 4 | 14 | 0.768 | $\frac{7}{8}$ |
| 1 | 0.785 | 129 | 4 | 4\% | 1.057 | 34.7 | 29.5 | 1.295 | 4 | 4 | ${ }^{1 \frac{1}{2}}$ | 1.000 | 1 |
| $1 \frac{1}{8}$ | 0.994 | 14 | 4 | 3\% | 1.295 | 30.3 | 19.7 | 1515 | $4 \frac{1}{3}$ | 4 $\frac{1}{2}$ | 1\% | 1.266 | 12 |
| 12 | 1.227 | 1\% | 4 $\frac{1}{3}$ | 3\% | 1.515 | 23.5 | 31.1 | 2.049 | 4\% $\frac{1}{3}$ | 4 $\frac{1}{3}$ | 1\% | 1.563 | 13 |
| 138 | 1.485 | 13 | 4 $\frac{1}{2}$ | 3 $\frac{1}{2}$ | 1744 | 17.4 | 21.7 | 2.302 | 41 | 5 | 2 | 1.891 | $1 \frac{3}{8}$ |
| 129 | 1.767 | 2 | 5 | 4\% | 2.302 | 30.3 | 34.0 | 3.023 | $4 \frac{3}{6}$ | 5 | $2 \frac{1}{6}$ | 2.250 | 1者 |
| $1{ }^{8}$ | 2.074 | 2 $\frac{1}{6}$ | 5 | 4! | 2.651 | 27.8 | 29.6 | 3.410 | 4\% | $5 \frac{1}{6}$ | $2 \%$ | 2.641 | 1\% ${ }^{\frac{3}{8}}$ |
| 23 | 2.408 | $2 \frac{1}{4}$ | 5 | 4 | 3.023 | 25.7 | 21.3 | 3.716 | $4 \div$ | $5 \frac{1}{3}$ | 24 | 3.083 | 1\% |
| $1 \frac{7}{8}$ | 2.781 | 2\% | 51 | 4\% | 3.410 | 23.8 | $31.4{ }^{2}$ | 4.619 | 51 | 6 | $2 \div$ | 3.516 | 18 |
| 2 | 3.142 | $2 \frac{1}{3}$ | 51 $\frac{1}{3}$ | 3\% | 3.716 | 18.3 | 27.7 | 5.107 | $4 \%$ | 6 | $2 \div$ | 4.000 | 2 |
| $2 \frac{1}{8}$ | 3.547 | 2\% | 5 $\frac{2}{3}$ | 3\% | 4.155 | 17.1 | 20.2 | 5.430 | $4 \%$ | 6 | 3 | 4.516 | $2 \frac{1}{8}$ |
| $2 \frac{1}{4}$ | 3.976 | $2 \frac{7}{6}$ | 6 | 4\% | 5.107 | 28.5 | 28.6 | 6.510 | $5 \frac{1}{6}$ | $6 \frac{1}{3}$ | $3 \div$ | 5.063 | $2 \frac{2}{4}$ |
| $2{ }^{\frac{3}{8}}$ | 4.430 | 3 | 6 | $4 \%$ | 5.430 | 22.6 | 33.8 | 7.548 | 6\% | 7 | 31 $\frac{1}{2}$ | 5.641 | $2 \frac{3}{8}$ |
| $2 \frac{1}{2}$ | 4.909 | 319 | $6 \frac{1}{2}$ | 4\% $\frac{1}{6}$ | 5.957 | 21.3 | 30.7 | 8.170 | 6 4 | 8 | 3\% | 6.250 | $2 \frac{1}{3}$ |
| $2 \frac{8}{8}$ | 5.412 | $3 \frac{1}{4}$ | 61 | 4! | 6.510 | 20.3 | 35.0 | 9.305 | $6 \div$ | 8 | $3 \frac{7}{6}$ | 6.891 | $2 \frac{3}{3}$ |
| $2{ }^{3}$ | 5.940 | 31 | 7 | 4! | 7.088 | 19.3 | 32.1 | 9994 | 6 | '8 | 4. | 7.563 | $2{ }^{3}$ |
| $2 \frac{7}{8}$ | 6.492 | 3\% | 8 | 51 | 8.170 | 25.9 | 37.0 | 11.329 | 8 | 9 | $4 \frac{1}{4}$ | 8.286 | $2 \frac{7}{3}$ |
| 3 | 7.069 | $3 \frac{3}{4}$ | 8 | $5 \div$ | 8.641 | 22.2 | 41.7 | 12.753 | 7! | 9 | 4 $\frac{1}{2}$ | 8.000 | 3 |
| $3 \frac{1}{3}$ | 7.670 | 3\% | 8 | $5 \frac{1}{4}$ | 9.305 | 21.3 |  |  |  |  |  |  | $3 \frac{1}{3}$ |
| 3 $\frac{1}{4}$ | 8.298 | 4 | 8 | $4 \frac{7}{17}$ | 9.994 | -0.7 |  |  |  |  |  |  | $3 \frac{1}{4}$ |
| $3 \frac{1}{7}$ | 9.621 | 4! | $\theta$ | $5 \div$ | 11.329 | 17.7 |  |  |  |  |  |  | $3{ }^{\frac{1}{3}}$ |
| $3 \frac{3}{4}$ | 11.045 | 4! | 9 | $4 \div$ | 12.753 | 15.5 |  |  |  |  |  |  | $3{ }_{4}^{3}$ |

TABLE 14.
Clevises. American Bridge Company Standards.
All Dimensions in Inches.


## TABLE 15.

Sleeve Nuts and Turnbuckles American Bridge Company Standards.
All Dimensions in Inches.

| - |  |  | $\begin{gathered} \text { Broat } \\ \text { onicu. } \\ \boldsymbol{A} \\ \hline \end{gathered}$ | Iono <br> Oina. <br> B | TNEIOE OAM. OM. <br> C | $\begin{gathered} \substack{\text { THICK- } \\ \text { NESS }} \\ t \end{gathered}$ | $\begin{aligned} & \text { weiont } \\ & \text { wh Lee. } \end{aligned}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | шеснт |  |  | noaro | dimens |  |  |  |
|  |  |  |  |  |  |  |  | tm 6 | $t$ | $\boldsymbol{A}$ | B | C | $L$ | T |  |
| $\frac{7}{8}$ | 113 | 7 | $1{ }^{\circ}$ | 12 ${ }^{\frac{7}{6}}$ | 118 | $\stackrel{1}{4}$ | $2 \frac{3}{4}$ | $2 \frac{1}{2}$ | $\stackrel{3}{\square}$ | $1 \frac{1}{4}$ | $2 \frac{1}{4}$ | 1! | $8{ }^{\frac{8}{6}}$ | $1{ }_{10}^{10}$ | $\frac{7}{8}$ |
| 1 | 143 | 7 | $11_{6}^{\circ}$ | 1\% | 11\% | \% | 3 | $3 \frac{1}{3}$ | 7 | " | $2{ }^{\frac{7}{10}}$ | $1 \frac{10}{10}$ | 9 | 1: $\frac{1}{5}$ | 1 |
| $1 \frac{1}{8}$ | $1^{\frac{3}{4}}$ | 719 | 2 | 2\% | 1: | $\frac{8}{10}$ | $3 \frac{1}{3}$ | 4 | $\frac{1}{3}$ | " | $2 \frac{10}{10}$ | $1 \frac{7}{10}$ | 9\% | $1{ }_{10}^{10}$ | 18 ${ }_{8}^{\frac{1}{8}}$ |
| $1 \frac{1}{4}$ | $\cdots$ | " | " | " | " | " | 4 | 54. | " | 12 $\frac{1}{3}$ | $2 \frac{3}{4}$ | $1{ }^{\circ} \mathrm{B}$ | 9\% | 17 ${ }^{\frac{7}{8}}$ | 17 |
| $1_{3}^{3}$ | 2 | 8 | $2^{3}$ | $2 \frac{3}{4}$ | 1\% | $\frac{3}{4}$ | 4 $\frac{1}{2}$ | 6 | * | 1\% | $3 \frac{1}{10}$ | 11119 | 101 | $2 \frac{1}{10}$ | $1{ }^{\frac{3}{3}}$ |
| $1{ }^{1}$ | " | " | " | " | " | " | $6 \frac{1}{2}$ | 7 | $\div$ | " | $3{ }^{\frac{2}{10}}$ | $1{ }^{3}$ | 10를 | $2 \frac{1}{4}$ | $1{ }^{\frac{1}{2}}$ |
| $1 \frac{18}{8}$ | $2 \frac{1}{4}$ | $8 \frac{1}{3}$ | $2^{\frac{3}{4}}$ | $3 \frac{3}{16}$ | 17 | $\frac{7}{10}$ | 8 | $8{ }^{\frac{1}{2}}$ | " | 13 | $3 \frac{1}{3}$ | 2 | $10^{\frac{7}{6}}$ | $2 \frac{10}{10}$ | $1{ }^{\frac{8}{8}}$ |
| $\mathbf{1}_{\frac{3}{3}}$ | $\cdots$ | " | * | " | " | " | $8 \frac{1}{2}$ | 10 | * | 2 | $3 \frac{3}{4}$ | $2^{\frac{1}{6}}$ | 114 | 2\% | 13818 |
| $1{ }_{8}^{7}$ | $2{ }^{\frac{1}{3}}$ | 9 | 3㐌 | 3\% | 2 $\frac{1}{6}$ | $\frac{1}{3}$ | 10 | 114 | $\frac{11}{10}$ | * | $3 \frac{7}{6}$ | $2{ }^{\frac{1}{10}}$ | $11{ }^{\circ}$ | $2{ }^{19}$ | $1{ }^{\frac{7}{8}}$ |
| 2 | " | " | " | " | " | " | 11 | 13 | " | $2 \frac{1}{4}$ | 4! | $2 \frac{1}{6}$ | 12 | 3 | 2 |
| $2 \frac{1}{8}$ | $2{ }^{\frac{3}{4}}$ | $9 \frac{1}{3}$ | $3{ }^{\frac{1}{3}}$ | $4 \frac{1}{10}$ | $2{ }^{\frac{3}{6}}$ | $\frac{\square}{20}$ | 14 | 15 | ${ }^{33}$ | $2{ }^{\frac{1}{3}}$ | 4 $\frac{1}{3}$ | $2 \frac{1}{3}$ | $12{ }^{\frac{3}{6}}$ | $3{ }^{\frac{3}{6}}$ | $2{ }^{\frac{3}{8}}$ |
| $2 \frac{1}{4}$ | $\cdots$ | " | * | " | " | " | 15 | 18 | $\frac{13}{10}$ | " | 4 $\frac{3}{4}$ | $2{ }^{11}$ | 12\% | $3{ }^{\frac{3}{6}}$ | $2 \frac{1}{3}$ |
| $2{ }^{3}$ | 3 | 10 | $3{ }_{3}^{\frac{7}{6}}$ | 4 $\frac{1}{2}$ | $2{ }^{\frac{\circ}{6}}$ | $\stackrel{8}{\square}$ | 18 | 20 | * | $2 \frac{9}{4}$ | $4 \frac{7}{6}$ | $2 \frac{3}{4}$ | 13\% | 3\% | $2{ }^{3}$ |
| $2 \frac{1}{2}$ | " | " | " | " | " | " | 19 | 24 | ${ }^{\frac{77}{37}}$ | 3 | $5 \%$ | $3{ }^{\frac{1}{6}}$ | 133 ${ }^{\frac{1}{3}}$ | 3 ${ }^{3}$ | $2{ }^{\frac{1}{2}}$ |
| $2{ }^{\frac{5}{8}}$ | $3 \frac{1}{4}$ | 10를 | $4 \frac{1}{4}$ | 4i80 | $2^{\text {\% }}$ | $\frac{11}{10}$ | 22 | 28 | $1{ }^{10}$ | " | $5 \%$ | 3\% ${ }^{\frac{1}{6}}$ | 13\% ${ }^{\frac{7}{6}}$ | $3{ }^{10}$ | $2{ }^{\frac{5}{8}}$ |
| $2 \frac{3}{4}$ | " | " | " | " | " | " | 23 | 30 | " | $3 \frac{1}{4}$ | $5 \frac{3}{4}$ | $3 \frac{1}{4}$ | 14! | 4交 | $2 \frac{3}{3}$ |
| $2 \frac{7}{8}$ | $3 \frac{1}{2}$ | 11 | $4{ }^{\circ}$ | 53 | $3 \frac{1}{6}$ | $\stackrel{9}{4}$ | 27 | 34 | $1{ }^{\frac{1}{32}}$ | ${ }^{4}$ | $6 \frac{1}{10}$ | $3{ }^{\frac{7}{10}}$ | 14\% | 4is\% | $2 \frac{7}{3}$ |
| 3 | " | " | " | " | ${ }^{\circ}$ | " | 28 | 38 | \% | $3{ }^{\frac{1}{2}}$ | 63 | $3 \%$ | 15 | 4 $\frac{1}{2}$ | 3 |
| $3 \frac{1}{8}$ | $3{ }^{\circ}$ | 113 | 5 | 519 | $3{ }^{\frac{3}{6}}$ | $\frac{13}{18}$ | 34 |  |  |  |  |  |  |  | $3 \frac{1}{8}$ |
| $3 \frac{1}{4}$ | " | " | " | " | " | " | 35 | 50 | $1^{1 \frac{1}{10}}$ | 4 | $6 \frac{3}{4}$ | $3{ }^{\frac{7}{8}}$ | $15^{\circ}$ | 4\% | $3 \frac{1}{4}$ |
| $3 \frac{3}{8}$ | 4 | 12 | $5 \frac{3}{6}$ | 61 | $3 \frac{1}{8}$ | $\frac{7}{6}$ | 39 |  |  |  |  |  |  |  | $3 \frac{3}{8}$ |
| $3 \frac{1}{2}$ | " | " | " | " | " | " | 40 | 65 | 137 | 4 | $7 \frac{1}{4}$ | 4! | 163 | 5! | $3{ }^{\frac{1}{3}}$ |
| $3_{\frac{8}{8}}$ | $4 \frac{1}{4}$ | 121 $\frac{1}{3}$ | $5 \frac{3}{4}$ | 610 | $3 \frac{7}{6}$ | ${ }^{18}$ | 45 |  |  |  |  |  |  |  | $3_{8}^{8}$ |
| $3 \frac{3}{4}$ | . | $\cdots$ | - | $\cdots$ | $\cdots$ | " | 47 |  | $1{ }^{10}$ | 5 | 81 | $4 \frac{7}{10}$ | 18 | 6 | $3{ }_{7}^{3}$ |
| $3 \frac{7}{8}$ | $4 \frac{1}{2}$ | 13 | 61 | 7! | 4 ${ }^{\frac{1}{6}}$ | 1 | 52 |  |  |  |  |  |  |  | $3 \frac{7}{8}$ |
| 4 | * | " |  | " | " | " | 55 |  | $1{ }^{\frac{7}{10}}$ | 5 | $8 \frac{3}{4}$ | 4 $\frac{8}{8}$ | 18 | 6 | 4 |
| 4i | $4^{3}$. | 132 ${ }^{\frac{2}{2}}$ | $6 \frac{1}{3}$ | 7io | $4 \frac{3}{6}$ | ${ }_{18}^{10}$ | 65 |  |  |  |  |  |  |  | $4 \frac{1}{4}$ |
| $4 \frac{1}{2}$ | 5 | 14 | 67 | 8 | $4 \frac{3}{4}$ | $1 \frac{1}{10}$ | 75 |  |  |  |  |  |  |  | $4 \frac{1}{2}$ |

TABLE 16.
Loop Bars. American Bridge Company Standards.
All Dimensions in Inches.


TABLE 17.
Eye Bars. American Bridge Company Standards.


TABLE 18.
Bridge Pins with Lomas Nuts.

|  | Pin. |  |  | Standard Dimensions. | Nut. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Screw. |  | $\frac{\circ}{8}$ |  |  |  |  |  |  |
|  |  |  |  | 6 Threads per Inch. |  |  |  |  |  |
| 2 | $11 / 2$ | 11/2 | 1/4 |  | ${ }_{1} \frac{5}{16}$ | 31/4 | $33 / 4$ | 2.5 | 2 |
| 21/4 | 11/2 | $11 / 2$ | $1 / 4$ | ${ }^{11^{\frac{10}{*}}}$ | ${ }_{1}{ }_{16}{ }^{5}$ | 31/4 | $33 / 4$ | 2.5 | 21/4 |
| 21/2 | 2 | 11/2 | 1/4 | $\square$ | $1{ }^{1} \frac{1}{1} \frac{3}{6}$ | $33 / 4$ | $4 \frac{5}{16}$ | 2.5 | 21/2 |
| 23/4 | 2 | 11/2 | $1 / 4$ | () | ${ }^{1 \frac{13}{16}}$ | 33/4 | $4{ }_{1}^{5}$ | 2.5 | 23/4 |
| 3 | $21 / 2$ | 11/2 | $1 / 4$ | $\underline{\longrightarrow}$ | $2 \frac{5}{16}$ | $41 / 2$ | $5{ }^{\frac{3}{16}}$ | 3.0 | 3 |
| 3 1 年 | $21 / 2$ | I $1 / 2$ | 1/4 |  | $2 \frac{5}{16}$ | $41 / 2$ | $5{ }^{\frac{3}{16}}$ | 3.0 | 31/4 |
| $31 / 2$ | 21/2 | I $1 / 2$ | 1/4 |  | $2{ }_{1}{ }^{\frac{5}{16}}$ | $41 / 2$ | $51^{\frac{3}{6}}$ | 3.0 | $31 / 2$ |
| 33/4 | 3 | 17/8 | 1/2 |  | $2 \frac{13}{16}$ | 5 | 53/4 | 5.5 | 33/4 |
| 4 | 3 | 17/8 | 1/2 |  | $2 \frac{13}{16}$ | 5 | 53/4 | 5.5 | 4 |
| 41/4 | $31 / 2$ | 17/8 | 1/2 |  | $31^{\frac{5}{6}}$ | 53/4 | 65/8 | 7.0 | 4/4 |
| $4^{1 / 2}$ | $31 / 2$ | 17/8 | 1/2 |  | $3{ }^{\frac{5}{15}}$ | 53/4 | 65\% | 7.0 | $41 / 2$ |
| 43/4 | $31 / 2$ | 17/8 | 1/2 | , | $3{ }^{\frac{5}{16}}$ | 53/4. | 6588 | 7.0 | 43/6 |
| 5 | 4 | 17/8 | 1/2 | -1- | $31 \frac{13}{6}$ | 61/2 | $71 / 2$ | 8.5 | 5 |
| 51/4 | 4 | 17/8 | 1/2 | (19 \% S S | $3 \frac{13}{6}$ | $61 / 2$ | $71 / 2$ | 8.5 | 51/4 |
| 51/2 | $41 / 2$ | 17/8 | 1/2 | 少 | $4{ }^{\frac{5}{16}}$ | 7 | $81 / 8$ | 11.0 | 51/2 |
| 53/4 | $41 / 2$ | 17/8 | 1/2 |  | $4{ }^{\frac{5}{6}}$ | 7 | 81/8 | 11.0 | 53/4 |
| 6 | $41 / 2$ | 17/8 | 1/2 |  | $4{ }_{16}^{5}$ | 7 | 81/8 | II.O | 6 |
| 61/4 | 5 | 23/8 | $3 / 4$ |  | $4 \frac{13}{16}$ | 73/4 | $8 \frac{15}{16}$ | 12.0 | 61/4 |
| 61/2 | 5 | 23/8 | $3 / 4$ |  | $4 \frac{13}{6}$ | 73/4 | $8 \frac{1}{1} \frac{5}{6}$ | 12.0 | 61/2 |
| 63/4 | $5^{1 / 2}$ | $23 / 8$ | $3 / 4$ | ( | $5 \frac{5}{16}$ | $81 / 4$ | $91 / 2$ | 13.5 | 63/4 |
| 7 | $51 / 2$ | $23 / 8$ | $3 / 4$ | 1 N | $5 \frac{5}{16}$ | 81/4 | 91/2 | 13.5 | 7 |
| $71 / 2$ | 51/2 | $23 / 8$ | $3 / 4$ |  | $5 \frac{5}{16}$ | $81 / 4$ | $91 / 2$ | 13.5 | $71 / 2$ |
| $73 / 4$ | 6 | $23 / 8$ | $3 / 4$ | - | $5 \frac{13}{16}$ | 9 | $103 / 8$ | 17.0 | 73/4 |
| 8 | 6 | $23 / 8$ | $3 / 4$ |  | $5 \frac{13}{16}$ | 9 | 103/8 | 17.0 | 8 |

Note.-To obtain grip " $G$ " add ${ }_{Y_{6}^{\prime} \text { " }}$ for each bar, together with amount given in table.

TABLE 19.
Standard Cotter Pins.
All Dimensions in Inches.


| Diam. or Pin. $P$ | Pin. |  | Head. |  | Cotter. |  | Avd to Grip. |  | Diam. Of $\xrightarrow[P]{\text { Pin. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| I | $1{ }^{\frac{1}{3}{ }^{2}}$ | $\frac{5}{16} \times \frac{1}{16}$ | I $1 / 4$ | $1 / 4$ | $13 / 4$ | $1 / 4$ | 7/8 | 5/8 | 1 |
| $11 / 4$ | I ${ }_{3}{ }^{2}$ | $\frac{5}{16} \times \frac{1}{1}{ }^{6}$ | $11 / 2$ | 1/4 | $2$ | 1/4 | 7/8 | 5/8 | $11 / 4$ |
| $11 / 2$ | 117 | $\frac{76}{16} \times \frac{18}{32}$ | 1 $3 / 4$ | $1 / 4$ | $21 / 2$ | \% ${ }^{5}$ | $11 / 8$ | 7/8 | $11 / 2$ |
| $13 / 4$ | $1 \frac{2}{3} \frac{5}{2}$ | $\frac{7}{16} \times \frac{3}{32}$ | 2 | 1/4 | 23/4 | ${ }^{5}$ | $11 / 8$ | 7/8 | $13 / 4$ |
| 2 | $2 \frac{1}{32}$ | $1 / 2 \times 1 / 8$ | 23/8 | $3 / 8$ | 3 | 3/8 | $13 / 8$ | I | 2 |
| $21 / 4$ | $2{ }^{\frac{9}{32}}$ | 1/2 $\times 1 / 8$ | 258 | $3 / 8$ | $31 / 4$ | 3/8 | $13 / 8$ | I | 2.15 |
| $21 / 2$ | $2 \frac{17}{32}$ | $5 / 8 \times \frac{5}{35}$ | 27/8 | $3 / 8$ | $33 / 4$ | $I^{7}$ | $11 / 2$ | 11/8 | -: |
| 23/4 | $2{ }_{3}^{25}$ | $5 / 8 \times \frac{5}{32}$ | $31 / 8$ | $3 / 8$ | 4 | $\frac{7}{16}$ | $11 / 2$ | $11 / 8$ | 23/4 |
|  | 3 $\frac{1}{32}$ |  |  |  |  |  | $17 / 8$ |  |  |
| $31 / 4$ | $3{ }^{9}$ | $3 / 4 \times 13$ | $33 / 4$ | $1 / 2$ | 5 | 1/2 | $17 / 8$ | I $3 / 8$ | $31 / 4$ |
| $31 / 2$ | $3 \frac{1}{3} \frac{7}{2}$ | $7 / 8 \times \frac{7}{32}$ | 4 | 1/2 | 6 | 588 | 21/8 | 158 | $31 / 2$ |
| 33/4 | $3 \frac{5}{3}$ | $7 / 8 \times \frac{7}{3}$ | 41/4 | $1 / 2$ | 6 | 5/8 | $21 / 8$ | 158 | 33/4 |

Note.-Use pins with lomas nuts, in preference to cotter pins, whenever possible.

TABLE 20.
Standard Cast O. G. Washers.
All Dimensions in Inches.


Diamefer of Bolt $=d$ $\left.\begin{array}{l}A=4 d+\frac{1}{4} \circ \\ B=2 d+\frac{1}{4} \cdot \\ B=d+\frac{1}{8} \cdot\end{array}\right\}$. For sizes not given below:

| Diameter of Bolt d. | A | $B$ | C | D | Weight in Pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1/2 | 258 | I 3/4 |  | 5/8 | 1/2 |
| 5/8 | $3$ | $17 / 8$ | $\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$ | $3 / 4$ | $3 / 4$ |
| $3 / 4$ | $31 / 4$ | $21 / 8$ | $\frac{1}{1} \frac{3}{6}$ | $7 / 8$ | $11 / 4$ |
| $7 / 8$ | $33 / 4$ | $21 / 2$ | $\frac{1}{1} \frac{5}{6}$ | 7/8 | I $1 / 2$ |
| 1 | 4 | 23/4 | $\mathrm{I}_{1}^{16}$ | 1 1/8 | $21 / 2$ |
| I 1/8 | $43 / 4$ | 23/4 | $\mathrm{I}_{15}^{3}$ | I $1 / 8$ | 3 |
| I $1 / 4$ | 6 | 3 | $1{ }^{5} 6$ | $11 / 4$ | 53/4 |
| I $1 / 2$ | 61/4 | $31 / 4$ | $15 / 8$ | I $1 / 2$ | 6 |
| I $3 / 4$ | $71 / 4$ | $33 / 4$ | 17/8 | 13/4 | $9^{1 / 2}$ |
| 2 | 81/4 | $41 / 4$ | $21 / 8$ | 2 | $171 / 4$ |

TABLE 21.
Maximum Allowable Bending Moments in Pins for Various Fiber Stresses.

| PIN |  | MOMENTS IN INCH POUNDS FOR FIBRE STRESSES PER SQ. IN. OF |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\|\begin{array}{\|c\|} \hline \text { DIAM. } \\ \text { INCHES } \end{array}\right\|$ | AREA | 15,000 | 18,000 | 20,000 | 22,000 | 25,000 |
| 1 | 0.785 | 1470 | 1770 | 1960 | 2160 | 2450 |
| $1{ }_{1}$ | 1.227 | 2880 | 3450 | 3830 | 4220 | 4790 |
| 11 | 1.767 | 4970 | 5960 | 6630 | 7290 | 8280 |
| $1{ }^{\text {属 }}$ | 2.405 | 7890 | 9470 | 10500 | 11570 | 13200 |
| 2 | 3.142 | 11800 | 14100 | 15700 | 17280 | 19600 |
| $2 \frac{1}{4}$ | 3.976 | 16800 | 20100 | 22400 | 24600 | 28000 |
| $2 \frac{1}{2}$ | 4.909 | 23000 | 27600 | 30700 | 33700 | 38400 |
| $2{ }^{\frac{3}{4}}$ | 5.940 | 30600 | 36800 | 40800 | 44900 | 51000 |
| 3 | 7.069 | 39800 | 47700 | 53000 | 58300 | 66300 |
| $3{ }^{3}$ | 8.296 | 50600 | 60700 | 67400 | 74100 | 84300 |
| $3{ }^{\frac{1}{2}}$ | 9.621 | 63100 | 75800 | 84200 | 92600 | 105200 |
| $3{ }^{3}$ | 11.045 | 77700 | 93200 | 103500 | 113900 | 129400 |
| 4 | 12.566 | 94200 | 113100 | 125700 | 138200 | 157100 |
| $4 \frac{1}{4}$ | 14.186 | 113000 | 135700 | 150700 | 165800 | 188400 |
| $4 \frac{1}{2}$ | 15.904 | 134200 | 161000 | 178900 | 196800 | 223700 |
| $4{ }^{4}$ | 17.721 | 157800 | 189400 | 210400 | 231500 | 263000 |
| 5 | 19.635 | 184100 | 220900 | 245400 | 270000 | 306800 |
| 5 | 21.648 | 213100 | 255700 | 284100 | 312500 | 355200 |
| $5{ }^{\frac{1}{2}}$ | 23.758 | 245000 | 294000 | 326700 | 359300 | 408300 |
| $5{ }^{3}$ | 25.967 | 280000 | 335900 | 373300 | 410600 | 466600 |
| 6 | 28.274 | 318100 | 381700 | 424100 | 466500 | 530200 |
| 64 | 30.680 | 359500 | 431400 | 479400 | 527300 | 599200 |
| $6^{\frac{1}{2}}$ | 33.183 | 404400 | 485300 | 539200 | 593100 | 674000 |
| $6{ }^{3}$ | 35.785 | 452900 | 543500 | 603900 | 664200 | 754800 |
| 7 | 38.485 | 505100 | 606100 | 673500 | 740800 | 841900 |
| 71 | 41.282 | 561200 | 673400 | 748200 | 823000 | 935300 |
| $7 \frac{1}{2}$ | 44.179 | 621300 | 745500 | 828400 | 911200 | 1035400 |
| 73 | 47.173 | 685500 | 822600 | 914000 | 1005300 | 1142500 |
| 8 | 50.265 | 754000 | 904800 | 1005300 | 1105800 | 1256600 |
| 83 | 53.456 | 826900 | 992300 | 1102500 | 1212800 | 1378200 |
| $8 \frac{1}{2}$ | 56.745 | 904400 | 1085200 | 1205800 | 1326400 | 1507300 |
| $8 \frac{3}{4}$ | 60.132 | 986500 | 1183800 | 1315400 | 1446900 | 1644200 |

TABLE 22.
Shearing and Bearing Value of Rivets.

| Diam. of Rivet. |  | $\begin{gathered} \text { Area } \\ \text { in } \\ \text { Sq. Ins. } \end{gathered}$ |  | Bearing Value for Different Thickness of Plate at $\mathbf{1 2 , 0 0 0}$ Founds per Square Inch. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frac. | Dec'l. |  |  | $\frac{1}{4}$ | ${ }^{5} 6$ | $\frac{8}{8}$ | $\mathrm{I}^{7}$ | $\frac{1}{2}$ | Is | $\frac{5}{8}$ | 13 | $\frac{3}{4}$ | 18 | $\frac{7}{8}$ | 15 | I |
| 3/8 | - 375 | . 1104 | 660 | 1, 1 jo | 1,410 | 1,690 |  |  |  |  |  |  |  |  |  |  |
| 1/2 | . 500 | .1963 | 1,180 | 1,500 | 1,880 | 2,250 | 2,630 | 3,000 |  |  |  |  |  |  |  |  |
| 5/3 | . 625 | . 3068 | 1,840 | 1,880 | 2,340 | 2,810 | 3,280 | 3,750 | 4,220 | 4,690 |  |  |  |  |  |  |
| 36 | . 750 | .4418 | 2,650 | 2,250 | 2,810 | 3,380 | 3,940 | 4,500 | 5,160 | 5,630 | 6,190 | 6,750 |  |  |  |  |
| 汭 | . 875 | .6013 | 3,610 | 2,630 | 3,280 | 3,940 | 4,590 | 5,250 | 5,910 | 6,560 | 7,220 | 7,880 | 8,530 | 9,190 | 9,840 |  |
| 1 | 1.000 | . 7854 | 4,710 | 3,000 | 3,750 | 4,500 | 5,250 | 6,000 | 6,750 | 7,500 | $8{ }^{2} 50$ | 9,000 | 9,750 | 10,500 | 11,250 | 12,000 |
| Diam. of Rivet. |  | $\begin{gathered} \text { Area } \\ \text { in } \\ \text { Sq. Ins. } \end{gathered}$ | $\begin{array}{\|c} \text { Single } \\ \text { Shear } \\ \text { at } \\ 7,500 \\ \text { Pounds } \end{array}$ | Bearing Value for Different Thickness of Plate at 15,000 Pounds per Square Inch. |  |  |  |  |  |  |  |  |  |  |  |  |
| Frac. | Dec'1. |  |  | $\frac{1}{4}$ | ${ }_{1}^{5}$ | $\frac{8}{8}$ | ${ }^{7} 8$ | $\frac{1}{2}$ | ${ }^{16}$ | $\frac{5}{8}$ | $1\}$ | $\frac{8}{4}$ | 13 | 7 | 15 | 1 |
| 3/8 | - 375 | .1104 | 830 | 1,410 | 1,760 | 2,110 |  |  |  |  |  |  |  |  |  |  |
| 1/2 | . 500 | .1963 | 1,470 | 1,880 | 2,340 | 2,810 | 3,280 | 3,750 |  |  |  |  |  |  |  |  |
| 58 | . 625 | . 3068 | 2,300 | 2,340 | 2,930 | 3,520 | 4,100 | 4,690 | 5,280 | 5,860 |  |  |  |  |  |  |
| $3 / 4$ | $\cdot 750$ | .4418 | 3,310 | 2,810 | 3,520 | 4,220 | 4,920 | 5,630 | 6,330 | 7,030 | 7,720 | 8,440 |  |  |  |  |
| 7/8 | . 875 | .6013 | 4,510 | 3,280 | 4,100 | 4,920 | 5,740 | 6,560 | 7,380 | 8,200 | 9,030 | 9,850 | 10,670 | 11,480 | 12,300 |  |
| 1 | 1.000 | . 7854 | 5,890 | 3,750 | 4,690 | 5,620 | 6,560 | 7,500 | 8,440 | 9,380 | 10,310 | 11,250 | 12,190 | 13,130 | 14,060 | 15,000 |

TABLE 22.-Continued.
Shearing and Bearing Value of Rivets.

| Diam. of Rivet. |  | $\begin{gathered} \text { Area } \\ \text { in } \\ \text { Sq. Ins. } \end{gathered}$ | Single <br> Shear <br> at <br> II, <br> Poo <br> Pounds. | Bearing Value for Different Thickness of Plate at 22,000 Pounds per Square Inch. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frac. | Dec'l. |  |  | $\frac{1}{4}$ | ${ }^{5} 5$ | $\frac{3}{8}$ | 18 | 1 | ${ }^{15}$ | $\frac{8}{8}$ | $3{ }^{3}$ | ${ }^{\frac{3}{4}}$ | $1{ }^{13}$ | $\frac{5}{8}$ | $\frac{1}{15}$ | 1 |
| 3/8 | -375 | . 1104 | 1,210 | 2,060 | 2,550 | 3,090 |  |  |  |  |  |  |  |  |  |  |
| 1/2 | . 500 | . 1963 | 2,160 | 2,750 | 3,440 | 4,130 | 4,820 | 5,500 |  |  |  |  |  |  |  |  |
| 5/8 | . 625 | . 3068 | 3,370 | 3,440 | 4,300 | 5,160 | 6,020 | 6,880 | 7,740 | 8,600 |  |  |  |  |  |  |
| $3 /$ | . 750 | . 4418 | 4,860 | 4,130 | 5,160 | 6,190 | 7,220 | 8,250 | 9,280 | 10,320 | 11,340 | 12,360 |  |  |  |  |
| 7/8 | . 875 | .6013 | 6,610 | 4,810 | 6,020 | 7,220 | 8,430 | 9,630 | 10,840 | 12,040 | 13,240 | 14,4,40 | 15,640 | 16,840 | 13,050 |  |
| 1 | 1.000 | . 7854 | 8,640 | 5,500 | 6,880 | 8,250 | 2,630 | 11,000 | 12,380 | 13,750 | 15, 130 | 16,500 | 17,880 | 19,520 | 20,630 | 22,000 |
| Diam. | f Rivet. | ea | Single Shear |  |  |  | Dearing | e for 1 | rent T | kness of | te at 24 | Pound | Square | nch. |  |  |
| Frac. | Dec'l. | Sq. Ins. | $\left\lvert\, \begin{gathered} \mathrm{x} 2,000 \\ \text { Pounds } \end{gathered}\right.$ | ${ }^{1}$ | ${ }^{5} 8$ | $\frac{3}{8}$ | $5^{7}$ | $\frac{1}{2}$ | ${ }^{9} 5$ | $\frac{5}{8}$ | $\frac{1}{1} \frac{1}{6}$ | $\frac{3}{4}$ | $1{ }^{1} 3$ | $\frac{7}{8}$ | 15 | 1 |
| \%'3 | . 375 | . 1104 | 1,320 | 2,250 | 2,810 | 3,380 |  |  |  |  |  |  |  |  |  |  |
| 1/2 | . 500 | . 1963 | 2,360 | 3,000 | 3,750 | 4,500 | 5,250 | 6,000 |  |  |  |  |  |  |  |  |
| 5/8 | . 625 | . 3063 | 3,680 | 3,750 | 4,690 | 5,620 | 6,560 | 7,500 | 8,440 | 9,370 |  |  |  |  |  |  |
| $3 / 4$ | .750 | . 4418 | 5,300 | 4,500 | 5,620 | 6,750 | 7,870 | 9,000 | 10, 120 | 11,250 | 12,370 | 13,500 |  |  |  |  |
| 7/3 | . $5_{75}$ | .6013 | 7,220 | 5,250 | 6,560 | 7,870 | 9,190 | 10,500 | 11,810 | 13,120 | 14,4\%0 | 15,750 | 17,060 | 18,370 |  |  |
| 1 | 1.000 | . 7854 | 2,430 | 6,000 | 7,500 | 9,000 | 10,500 | 12,000 | 13,500 | 15,000 | 16,500 | 13,000 | 10,500 | 21,000 | 22,500 | 24,000 |

## TABLE 23.

Taele of Areas in Square Inches, to be Deducted from Riveted Plates or Shapes to Obtain Net Areas.


In calculating the net area add $1 / 8$ inch to diameter of rivet before entering the table.

TABLE 24.
American Bridge Co.'s Standard Buckle Plates.


Plates are made $\frac{1}{4}{ }^{\prime \prime}, \frac{5}{16}{ }^{\prime \prime}, \frac{3}{8}{ }^{\prime \prime}$ or $\frac{7^{\prime}}{16}{ }^{\prime \prime}$ thick.
Buckles of different sizes should not be used in the same plate.
Rivets generally $\frac{5}{8} /$ or $\frac{8_{4}}{4}$ diameter.

TABLE 25.
Typical Hand Cranes.

| Capacity in Tons. | Span, | Wheel Base. | Maximum Wheel Load, Lbs. | VerticalClearance. | $\begin{gathered} \text { Side } \\ \text { Clearance. } \end{gathered}$ | Weight of Rails, Lbs. per Yard for |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | I Beams. | Plate <br> Girders. |
| 2 | $\begin{aligned} & 30 \\ & 50 \end{aligned}$ | $4^{\prime}-0^{\prime \prime}$ $5^{\prime}-0^{\prime \prime}$ | $\begin{aligned} & 3,1 c o \\ & 4,000 \end{aligned}$ | $4^{\prime}-0^{\prime \prime}$ $4^{\prime}-0^{\prime \prime}$ | $\begin{aligned} & 7^{\prime \prime} \\ & 7^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |
| 4 | 30 | $4^{\prime}-0^{\prime \prime}$ $5^{\prime}-0^{\prime \prime}$ | 5,400 | $4^{\prime}-6^{\prime \prime}$ $4^{\prime}-6^{\prime \prime}$ | $8^{\prime \prime}$ $8 \prime \prime$ | 30 30 | 30 30 |
|  | 30 | $\mathrm{C}^{\prime}-0^{\prime \prime}$ | 8,000 | $5^{\prime}-0^{\prime \prime}$ | $9 \prime$ | 30 | 35 |
| 6 | 50 | $7^{\prime}-0^{\prime \prime}$ | 9,200 | $5^{\prime}-0^{\prime \prime}$ | $9^{\prime \prime}$ | 30 | 35 |
| 8 | 30 | 6'-0/1 | $10,500$ | 5 ${ }^{\prime}-0^{\prime \prime}$ | $10^{\prime \prime}$ | 35 | 40 |
| 8 | 50 |  | II,800 | $55^{\prime}-0^{\prime \prime}$ |  | 35 | 40 |
| 10 | 30 | $7 \prime-0^{\prime \prime}$ $8^{\prime}-0^{\prime \prime}$ | 13,000 | $\xrightarrow{5} \begin{aligned} & \text { 5 }-0^{\prime \prime} \\ & 5^{\prime}-0^{\prime \prime}\end{aligned}$ | $10^{\prime \prime}$ | $40$ | 40 |
| 10 | 50 | $8{ }^{8}-0^{\prime \prime}$ | 14,400 | $5^{\prime}-8^{\prime \prime}$ | $10^{\prime \prime}$ | 40 | 40 |
| 16 | $\begin{aligned} & 30 \\ & 50 \\ & 50 \end{aligned}$ | $7^{\prime}-0^{\prime \prime}$ $8^{\prime}-0^{\prime \prime}$ 7 | 20,700 22,300 | $5^{\prime}-6^{\prime \prime}$ $5^{\prime}-6^{\prime \prime}$ | $10 / 1$ $10^{\prime \prime}$ | 45 | 45 |
|  | $\begin{aligned} & 50 \\ & 30 \end{aligned}$ | 8-0, ${ }^{\prime \prime}$ | 22,300 26,000 | $55^{\prime}-6{ }^{\prime \prime}$ | $1{ }^{10 \prime \prime}$ | 45 50 | $\begin{aligned} & 45 \\ & 50 \end{aligned}$ |
| 20 | $\begin{aligned} & 30 \\ & 50 \end{aligned}$ | $8^{\prime}-0^{\prime \prime}$ | 23,000 | $5^{\prime}-6{ }^{\prime \prime}$ | $10^{\prime \prime}$ | 50 | 50 |
| 25 | $\begin{aligned} & 30 \\ & 50 \end{aligned}$ | $7^{\prime}-0^{\prime \prime}$ $8^{\prime}-0^{\prime \prime}$ | 32,300 35,000 | $6^{\prime}-0^{\prime \prime}$ $6^{\prime}-0^{\prime \prime}$ | $\begin{aligned} & 12^{\prime \prime} \\ & 12^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | 55 |

TABLE 26.
Typical Electric Traveling Cranes.

| Capacity, 'lons. | $\begin{gathered} \text { Span, } \\ \text { Ft. } \end{gathered}$ | Wheel Base. | Maximum Wheel Load, Lbs. | Total Weight of Crane, Lbs. | Side Clearance. | Vertical Clearance. | Weight of Rail, Lbs. per Yard, for |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Plate Girders. | I' ${ }^{\text {c }}$ eams. |
| $3 \frac{1}{2}$ | to 30 | $6^{\prime} 9$ 9' | 9,600 | 16,7co | 9 ${ }^{\frac{1}{2}}{ }^{\prime \prime}$ | $4^{\prime} 10^{\prime \prime}$ | 40 | 40 |
| $3 \frac{1}{2}$ | $40$ | $6^{\prime}$ II' ${ }^{\prime \prime}$ | 10,400 | 19,200 | $9 \frac{1}{2}{ }^{\prime \prime}$ | $4^{\prime}$ II' ${ }^{\prime \prime}$ | 40 | 40 |
| 32 | 60 | 10'. $0^{\prime \prime}$ | 12,600 | 27,700 | 1011 | $5^{\prime} 3^{\prime \prime}$ | 40 | 40 |
| 5 | to 30 | $8^{\prime} 0^{\prime \prime}$ | 11,600 | 19,5 ${ }^{\text {co }}$ | $10^{\prime \prime}$ | $6^{\prime} 0^{\prime \prime}$ | 40 | 40 |
| 5 | 40 | $8^{\prime} 6^{\prime \prime}$ | 12, 5 co | 22,400 | $10^{\prime \prime}$ | $6^{\prime} 0^{\prime \prime}$ | 40 | 40 |
| 5 | 60 | $10^{\prime} 0^{\prime \prime}$ | 15,500 | 31,300 | $10^{\prime \prime}$ | $6^{\prime} 0^{\prime \prime}$ | 40 | 40 |
| $7 \frac{1}{5}$ | to 30 | $8^{\prime} 6^{\prime \prime}$ | 14,900 | 22,300 | $10^{\prime \prime}$ | $6^{\prime \prime} 0^{\prime \prime}$ | 40 | 40 |
| 5 | 40 | - $8^{\prime} 8^{\prime \prime}$ | 16,200 | 24,900 | $10^{\prime \prime}$ | $6^{\prime} \mathrm{c}^{\prime \prime} \mathrm{c}^{\prime \prime}$ | 40 | 40 |
| 5. | 60 | 10' $0^{\prime \prime}$ | 19,100 | 34,100 | $10^{\prime \prime}$ ! | $6^{\prime} 0^{\prime \prime}$ | 40 | 40 |
| 10 | to 30 | $8^{\prime} 6^{\prime \prime}$ | 18,500 | 23,500 | $10^{\prime \prime}$ | $6^{\prime} 0^{\prime \prime}$ | 45 | 40 |
| 10 | 40 | $8^{\prime} 8^{\prime \prime}$ | 17,800 | 28,400 | $10^{\prime \prime}$ | $6^{\prime} \mathrm{c}^{\prime \prime}$ | 45 | 40 |
| 10 | 60 | 10'. $0^{\prime \prime}$ | 22,700 | 37,800 | $10^{\prime \prime}$ | $6^{\prime} \mathrm{c}^{\prime \prime}$ | 45 | 40 |
| 15 | to 30 | $9^{\prime} 6^{\prime \prime}$ | 25,700 | 29,600 | $12^{\prime \prime}$ | $6^{\prime} 7^{\prime \prime}$ | 50 | 53 |
| 15 | 40 | $9^{\prime} C^{\prime \prime}$ | 27,100 | 33,900 | $12^{\prime \prime}$ | $6^{\prime} 9^{\prime \prime}$ | 50 | 50 |
| 15 | 60 | $10^{\prime} 0^{\prime \prime}$. | 29,900 | 44,000 | $12^{\prime \prime}$ | $6{ }^{\prime}$ I ${ }^{\prime \prime}$ | 50 | 50 |
| 20 | to 30 | $9^{\prime} 6^{\prime \prime}$ | 32,300 | 34,200 | 12 " | $7{ }^{\prime \prime} \mathrm{I}^{\prime \prime}$ | 55 | 50 |
| 20 | 40 | $9^{\prime} 6^{\prime \prime}$ | 34,300 | 38,800 | $12{ }^{1 \prime \prime}$ | $7^{\prime} 3^{\prime \prime}$ | 55 | 50 |
| 20 | 60 | $10^{\prime} 0^{\prime \prime}$ | 38,300 | 50,700 | $13^{\prime \prime}$ | $7^{\prime} 6^{\prime \prime}$ | 55 | 50 |
| 25 | to 40 | $9^{\prime} 0^{\prime \prime}$ | 40,200 | 44,500 | $13^{\prime \prime}$ | $7^{\prime} 7^{\prime \prime}$ | 60 | 50 |
| 25 | 60 | $10^{\prime} 0^{\prime \prime}$ | 45,300 | 59,500 | $13^{\prime \prime}$. | $8^{\prime} 0^{\prime \prime}$ | 60 | 50 |
| 30 | to 40 | $9^{\prime} 8^{\prime \prime}$ | 46,200 | 51,100 | $13^{\prime \prime}$ | $8^{\prime} 0^{\prime \prime}$ | 70 | 60 |
| 30 | 60 | 10'. $4^{\prime \prime}$. | 52,200 | 68,000 | $14^{\prime \prime}$. | $8^{\prime} 6^{\prime \prime}$ | 70 | 60 |
| 40 | to 40 | 10' $8^{\prime \prime}$ | 61,000 | 69,300 | $16^{\prime \prime}$ | $8^{\prime} 9^{\prime \prime}$ | 80 | 60 |
| 40 | 60 | II' $2^{\prime \prime}$, | 68,600 | 87,000 | $16^{\prime \prime}$. | $9^{\prime} \mathrm{I}^{\prime \prime}$ | 80 | 60 |
| 50 | to 40 | 11', $2^{\prime \prime}$ | 74,000 | 77,100 | $16^{\prime \prime}$ | $9^{\prime} 5^{\prime \prime}$, | 100 | 6 |
| 50 | 60 | II' $6^{\prime \prime}$ | 86,000 | 98,500 | $16^{\prime \prime}$ | $9^{\prime} 5^{\prime \prime}$ | 100 | 60 |

TABLE 27.
Table for Rivet Spacing.


TABLE 28.
Table for Rivet Spacing.

| 0 | PITCH IN INCHES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | 3 | 31 $\frac{1}{8}$ | $3 \frac{1}{4}$ | $3 \frac{3}{8}$ | $3 \frac{1}{\frac{1}{2}}$ | $3{ }^{3}$ | 4 | 41 | $4 \frac{1}{2}$ | 4 | 5 | $5 \frac{1}{1}$ | $5_{2}^{1}$ | 5 | 6 | \% |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 2 | -6 | -6\% | -6年 | -6 ${ }^{\text {a }}$ | - 7 | - $7 \frac{1}{2}$ | -8 | -82 | - 9 | -93 | -10 | -1012 | -11 | $-11 \frac{1}{2}$ | 1-0 | 2 |
| 3 | - 0 | - 98 | -98 | -10 ${ }^{\frac{1}{6}}$ | $-10 \frac{1}{3}$ | - 111 | 1-0 | 1. $0:$ | 1-13 | 1-2 ${ }^{\frac{3}{4}}$ | 1-3 | 1-33 | 1-42 | 1-5! | 1-6 | 3 |
| 4 | 1-0 | 1-013 | 1-1 | 1-1 $1 \frac{1}{2}$ | 1-2 | 1-3 | 1-4 | 1-5 | 1-6 | 1-7 | 1-8 | 1-9 | 1-10 | 1-11 | 2-0 | 4 |
| 5 | 1-3 | 1-3 ${ }^{\frac{2}{4}}$ | 1. $4 \frac{1}{4}$ | 1-47 | 1-5 ${ }^{\frac{1}{7}}$ | 1-6 ${ }^{\frac{3}{4}}$ | 1-8 | 9 | 1-104 | 1-11 ${ }^{\text {a }}$ | 2-1 | 2-2 | 2-3 3 | 2-43 | 2-6 | 5 |
| 6 | 1-6 | 1-6: ${ }^{\frac{1}{4}}$ | 1-7 $\frac{1}{3}$ | 1-8! | 1-9 | 1-101 $\frac{1}{2}$ | 2-0 | 2-1 $\frac{1}{3}$ | 2-3 | 2-4 ${ }^{\frac{1}{2}}$ | 2-6 | 2-71 | 2-9 | 2-10: | 3-0 | 6 |
| 7 | 1-9 | 1-87 | 1-10: | 1-11 $\frac{1}{6}$ | 2- $0 \frac{1}{2}$ | 2-2\% | 2-4 | 2-53 | 2-74 | 2-91 | 2-11 | 3-0: | 3-213 | 3-4 | 3-6 | 7 |
| 8 | 2-0 | 2-1 | 2-2 | 2-3 | 2-4 | 2-6 | 2-8 | 2-10 | 3-0 | 3-2 | 3-4 | 3-6 | 3-8 | 3-10 | 4.0 | 8 |
| 9 | 2-3 | 2-41 | 2-5 ${ }^{\frac{1}{4}}$ | 2-6: | 2-71 | 2-93 | 3-0 | 3-2 2 | 3-4 | 3-6: | 3-9 | 3-114 | 4- $1 \frac{1}{2}$ | 4-33 | 4-6 | 9 |
| 10 | 2-6 | 2-71 | 2-81 | 2-92 | 2-11 | 3-1 $\frac{1}{1}$ | 3-4 | 3-6: | 3-9 | 3-11 $\frac{1}{2}$ | 4-2 | 4-4! | 4-7 | 4. 91 | 5-0 | 10 |
| 11 | 2-9 | 2-103 | 2-11 : | 3-11 | 3-2 $\frac{1}{3}$ | 3-54 | 3-8 | 3-103 | 4- 1 $\frac{1}{3}$ | 4. 44 | 4.7 | 4. 92 | 5- $\mathrm{O}_{5}$ | 5-31 | 5-6 | 11 |
| 12 | 3-0 | 3-1 $\frac{1}{7}$ | 3-3 | 3-4 4 | 3-6 | 3-9 | 4-0 | 4-3 | 4-6 | 4-9 | 5-0 | 5-3 | 5-6 | 5-9 | 6-0 | 12 |
| 13 | 3-3 | 3-4t | 3-6! | 3-77 | 3-91 | 4-0: | 4-4 | 4. $7 \frac{1}{4}$ | 4-102 | 5-13 | 5-5 | 5-81 | 5-11 $\frac{1}{3}$ | 6-23 | 6-6 | 13 |
| 14 | 3-6 | 3-7a | 3-913 | 3-11 $\frac{1}{4}$ | 4-1 | 4-41 | 4-8 | 4-111 | 5-3 | 5-6 $\frac{1}{2}$ | 5-10 | 6. $1 \frac{1}{3}$ | 6. 5 | 6-85 | 7-0 | 14 |
| 15 | 3-9 | 3-10\% | 4. 08 | 4-2 ${ }^{\frac{4}{4}}$ | 4-41 | 4-8! | 5-0 | 5-3: | 5-71 | 5-11 4 | 6-3 | 6. 63 | 6-10: | 7-21 | 7-6 | 15 |
| 16 | 4-0 | 4-2 | 4-4 | 4-6 | 4-8 | 5-0 | 5-4 | 5-8 | 6-0 | 6-4 | 6-8 | 7-0 | 7-4 | 7-8 | 8-0 | 16 |
| 17 | 4-3 | 4-51 | 4-71 | 4-93 | 4-111 | 5-37 | 5-8 | 6- $0 \cdot \frac{1}{4}$ | 6-41 | 6-84 | 7-1 | 7-5: | 7-9! | 8-13 | 8-6 | 17 |
| 18 | 4-6 | 4-8! | 4-10 $\frac{1}{2}$ | 5-03 | 5-3 | 5-71 | 6-0 | 6-4 42 | 6-9 | 7-113 | 7-6 | 7-101 | 8-3 | 8-71 | 9-0 | 18 |
| 19 | 4-9 | 4-11: | 5-1 $\frac{1}{4}$ | 5-41 | 5-61 | 5-11 $\frac{1}{4}$ | 6-4 | 6-8: | 7-12 ${ }^{\frac{1}{2}}$ | 7-6: | 7-11 | 8-33 | 8-8 | 9-11 | 8-6 | 1.9 |
| 20 | 500 | 5-2! | 5-5 | 5-71 | 5-10 | 6-3 | 6-8 | 7-1 | 7-6 | 7-11 | 8-4 | 8-9 | 9-2 | 9-7 | 10-0 | 20 |
| 21 | 5-3 | 5-5\% | 5-8 ${ }^{\frac{1}{4}}$ | 5-10\% | 6-11 | 6-63 | 7-0 | 7-5 ${ }^{2}$ | 7-10 ${ }^{\frac{1}{2}}$ | 8-3: | 8-9 | 9-2! | 9-71 | 10-03 | 10-6 | 21 |
| 22 | 5-6 | 5-83 | 5-11 $\frac{1}{3}$ | 6-2t | 6-5 | 6-10! | 7-4 | 7-9: | 8-3 | 8-8t | 9-2 | 9-7 ${ }^{\frac{1}{2}}$ | 10-1 | 10-6! | 11-0 | 22 |
| 23 | 5-9 | 5-117 | 6-2 ${ }^{\frac{3}{4}}$ | 6-5 ${ }^{\frac{8}{7}}$ | 6-81 | 7-2 ${ }^{\text {¢ }}$ | 7-8 | 8-13 | 8-7 $7 \frac{1}{2}$ | 9-1 11 | 9.7 | 10-03 | 10-61 | 11-0: | 11-6 | 23 |
| 24 | 6-0 | 6-3 | 6-6 | 6-9 | 7-0 | 7-6 | 8-0 | 8-6 | 9-0 | 9-6 | 10-0 | 10-6 | 11-0 | 11-6 | 12-0 | 24 |
| 25 | 6-3 | 6-61 | 6-9! | 7-03 | 7-31 | 7-9 ${ }^{\frac{3}{4}}$ | 8-4 | 8-10! | 9-4 4 | 9-103 | 10-5 | 10-11 | 11-6 $5_{2}^{2}$ | 11-113 | 12-6 | 25 |
| 26 | 6-6 | 6-9! | 7-01 | 7-3! | 7-7 | 8-11 | 8-8 | 9-213 | 9-9 1 | 10-31 | 10-10 | 11-41 | 11-11 | 12-5 ${ }_{1}^{2}$ | 13-0 | 26 |
| 27 | 6-9 | 7-03 | 7-3? | 7-71 | 7-10 $\frac{1}{3}$ | 8-5 5 | 9-0 | 9-64 | 10- $1 \frac{1}{2} 1$ | 10-81 | 11-3 | 11-93 | $12-4 \frac{1}{2}$ | 12-11 ${ }^{1}$ | 13-6 | 27 |
| 28 | 7-0 | 7-31 | 7-7 | 7-1012 | 8-2 | 8-9 | 9-4 | 9-11 | 10-6 | 11-1 | 11-8 | 12-3 | 12-10 | 13-5 | 14-0 | 28 |
| 29 | 7-3 | 7-68 | 7-10 $\frac{1}{4}$ | 8-12 | 8-5t | 9-0\% | 9-8 | 10 | 10-10 ${ }^{1} 1$ | 11-5 ${ }^{3}$ | 12-1 | 12-8! | 13-31 | 13-103 | 14-6 | 29 |
| 30 | 7-6 | 7-93 | 8-1 $1 \frac{1}{3}$ | 8-5 ${ }^{\frac{1}{4}}$ | 8-9 | 9-4 $\frac{1}{2}$ | 10-0 | 10-721 | 11-3 11 | 11-102 | 12-6 | 13-12 | 13-9 | 14-4 $\frac{1}{2}$ | 15-0 | 30 |
| \% | 3 | $3 \frac{1}{8}$ | $3 \frac{3}{4}$ | $3{ }^{3}$ | $3 \frac{1}{2}$ | $3{ }^{\frac{5}{4}}$ | 4 | $4 \frac{1}{1}$ | 43 | 43 | 5 | 53 | $5 \frac{7}{2}$ | 5 | 6 | $\stackrel{4}{4}$ |
| \% |  |  |  |  |  |  | PITC | IN IN |  |  |  |  |  |  |  | \% |

TABLE 29.

## Tie Rods



UPPER FIGURES IN TABLE GIVE LENGTHS IN FEET AND INCHES. Lower figures glve welghts in pounds of one rod and two nuts.

Lengths and Weights of $3 / i^{\prime \prime}$ Tie Rods FOR DIFFERENT DISTANCES CENTER TO CENTER OF BEAMS

| FEET | $\mathrm{O}^{\prime \prime}$ | $1^{\prime \prime} 2^{\prime \prime} 3^{\prime \prime}$ | $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$ | $77^{\prime \prime} 8^{\prime \prime} 9^{\prime \prime} \mid$ | $10^{\prime \prime} 11^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  | $1-3$ 3.4 | $2-0$ 3.8 | 2.3 4.2 |
| 2 | $2-3$ 4.2 | $2-6$ 4.5 | 2.9 4.9 | 3.0 5.3 | 3.3 5.7 |
| 3 | 3.3 5.7 | 3.6 6.0 | 3.9 6.4 | $4-0$ 6.8 | $4-3$ 7.2 |
| 4 | $4-3$ 7.2 | $4-6$ 7.5 | 4.9 7.9 | $5-0$ 8.3 | $5-3$ 8.7 |
| 5 | $5-3$ 8.7 | $5-6$ 9.0 | $5-9$ 9.4 | 6.0 9.8 | $6-3$ 10.2 |
| 6 | $6-3$ 10.2 | $6-6$ 10.5 | $6-9$ 10.9 | 7.0 11.3 | 7.3 11.7 |
| 7 | $7-3$ 11.7 | 12.6 | $7-9$ 12.4 | $8-0$ 12.8 | $8-3$ 13.2 |
| 8 | $8-3$ 13.2 | $8-6$ 13.5 | $8-9$ 13.9 | 9.0 14.3 | $9-3$ 14.7 |

## SWEDGE BOLT



| DIAMETER <br> INCHES | LENGTH <br> FEET \& INS. | WEIGHT <br> INCLUDING NUT <br> POUNDS |
| :---: | :---: | :---: |
| $3 / 4$ | $0-9$ | 2 |
| $1 / 8$ | $1-0$ | 3 |
| 1114 | $1-0$ | 4 |
| $11 / 8$ | $1-3$ | 7 |

Punch holes $3 \mathrm{~s}^{\prime \prime}$ larger than diameter

BUILT-IN ANCHOR BOLTS


| DIAMETER <br> INCHES | LENGTH <br> FEET \& INS. | WASHER <br> ONCHES | WEIGHT EACH WITH <br> NUT AND WASHER <br> POUNDS |
| :---: | :---: | :---: | :---: |
| $3 / 4$ | $2-0$ | $4 \times \frac{3}{8} \times 4$ | 6 |
| $7 / 8$ | $2-6$ | $4 \times \frac{3}{8} \times 4$ | 8 |
| $111 / 4$ | $3-0$ | $6 \times \frac{3}{8} \times 6$ | 8 |
| 114 | $4-0$ | $6 \times \frac{3}{8} \times 6$ | 14 |
|  |  |  |  |

When center to center of anchors is less than width of washer, use washer with two holes.

GOVERNMENT ANCHOR

$z^{\prime \prime}$ Rod $1^{\prime} \cdot g^{\prime}$ long Weight 3 pounds

ANGLE ANCHOR


2 Angles $6^{\prime \prime} \times 6^{\prime \prime} \times 7^{\prime \prime}-0^{\prime} \cdot 3^{\prime \prime}$ and two $3^{3 \prime \prime}$ bolts. Weight with bolts 10 pounds.

TABLE 30.
Channel Columns.

|  <br> $15 "$ CHANNEL COLUMNS with $16^{\prime \prime} \& 18^{\prime \prime} \mathrm{Cov}$. Pls. | I2"CHANNEL COLUMNS with 14 " $\& 16^{\prime \prime}$ Cov. Pls. | $10^{\prime \prime}$ CHANNEL COLUMNS with 12 " $\& 14^{\prime \prime} \mathrm{Cov}$. Pls. |
| :---: | :---: | :---: |
| 9"Channel COLUMNS with $10^{10} \& 12^{\prime \prime}$ Cov. Pls. | $8^{\prime \prime}$ CHANNEL COLUMNS with $10^{\prime \prime} \& 12$ "Cov.Pls. | PLATE \& ANGLE COLUMNS |

# THE DESIGN OF MINE STRUCTURES 

By MILO S. KETCHUM, C.E., M.Am.Soc.C.E.<br>Dean of College of Engineering and Professor of Civil Engineering, University of Colorado; Consulting Engineer

Cloth, $61 / 2 x 9$ inches, pp. $460+x v i, 65$ tables, 265 illustrations in the text and 7 folding plates. Price, $\$ 4.00$ net, postpaid

## TABLE OF CONTENTS

PART I.-Design of Head Works. Chapter I. Types of Head Works. II. Hoisting from Mines. III. Stresses in Simple Head Frames. IV. Stresses in Statically Indeterminate Structures. V. Stresses in Statically Indeterminate Head Frames. VI. The Design of Head Frames. VII. The Design of Coal Tipples.

PART II.-The Design of Mine Buildings. Chapter VIII. Stresses in Roof Trusses and Frame Structures. IX. The Design of Roof Trusses and Steel Frame Structures. X. The Design of Bins and Retaining Walls. XI. The Design of Coal Washers. XII. The Design of Coal Breakers. XIII. Miscellaneous Structures.

PART III.-Details of Design and Cost of Mine Structures. Chapter XIV. Details of the Design of Steel Structures. XV. Estimate of Weight and Cost of Mine Structures.

APPENDIX I. - Specifications for Steel Mine Structures. Part I. Steel Frame Buildings. Part II. Steel Head Frames and Coal Tipples, Washers and Breakers.

APPENDIX II.-Specifications for Timber Mine Structures.
APPENDIX III.-Reiaforced Concrete Structures. Chapter I. Data for the Design of Reinforced Concrete Structures. II. Formulas for the Design of Reinforced Concrete Structures. III. Specifications for Plain and Reinforced Concrete Structures.

## COMMENTS OF THE PRESS

It is a pleasure to record the publication of another book by Professor Ketchum. His books are always examples of what technical treatises should be, and this volume is no exception to the rule. This volume is a self-contained, concise and valuable textbook for the student or structural engineer who wishes to become familiar with the design of mine structures.-Canadian Engineer, July 4, 1912.

This is a new book in a field never previously covered in a satisfactory manner. The various subjects described and illustrated are based on good practical working plants and make them particularly valuable for reference. The author is to be highly commended for producing so useful a book.-Mining and Scientific Press, July 6, 1912.

So far as we are aware this book has no counterpart in recent technical literature.
-Mines and Minerals, July, 1912.

## McGraw-Hill Book Company, New York

# DESIGN OF WALLS, BINS AND GRAIN ELEVATORS 

SECOND EDITION, ENLARGED

By MILO S. KETCHUM, C.E., M.Am.Soc.C.E.<br>Dean of College of Engineering and Professor of Civil Engineering, University of Colorado; Consulting Engineer

> Cloth, $61 / 2 \times 9$ ins., pp. $556+$ xix, 40 tables, 304 illustrations and 2 folding plates. Price, $\$ 4.00$ net, postpaid.

## TABLE OF CONTENTS

PART I.-Design of Retaining Walls. Chapter I. Rankine's Theory. IA. Rankine's Theory Modified. II. Coulomb's Theory. III. Design of Masonry Retaining Walls. IV. Design of Reinforced Concrete Retaining Walls. IVA. Effect of Cohesion; Stresses in Bracing of Trenches; Stresses in Tunnels. V. Experiments on Retaining Walls. VI. Examples of Retaining Walls. VII. Methods of Construction and Cost of Retaining Walls.

PART II.-The Design of Coal Bins, Ore Bins, etc. Chapter VIII. Types of Coal Bins, Ore Bins, etc. IX. Stresses in Bins. X. Experiments on Pressure on Bin Walls. XI. The Design of Bins. XII. Examples and Details of Bins. XIII. Cost of Bins. XIV. Methods of Handling Materials.

PART III.-Design of Grain Bins and Elevators. Chapter XV. Types of Grain Elevators. XVI. Stresses in Grain Bins. XVII. Experiments on the Pressure of Grain in Deep Bins. XVIII. The Design of Grain Bins and Elevators. XIX. Examples of Grain Elevators. XX. Cost of Grain Bins and Elevators.

APPENDIX I.-Concrete, Plain and Reinforced. Chapter I. Concrete. II. Data for Design of Reinforced Concrete Structures. III. Formulas for Design of Reinforced Concrete. IV. Specifications for Reinforced Concrete Construction.

APPENDIX II. Definitions of Masonry Terms; Specifications for Stone Masonry.
APPENDIX III. Specifications for Material and Workmanship of Steel Structures.

## COMMENTS OF THE PRESS.

Those familiar with Professor Ketchum's book on Steel Mill Buildings will welcome this pioneer treatise on bin design, which is characterized by the same thoroughness, clearness and logical and systematic arrangement displayed in the former volume. . . . A valuable feature of the book is to be found in the tables of costs of actual structures which are included wherever possible and analyzed so thoroughly as to be of the greatest assistance and value. For practical data and scientific and theoretical accuracy, Prof. Ketchum's book can be recommended to the student and practicing engineer alike.-The Engineering Magazine, November, 1907.

This book will be welcomed by the constructing engineer as the first authoritative and elaborate contribution to technical literature on the perplexing subject of the design and construction of coal and ore bins. . . . The portion of the book which relates to coal and ore bins is the largest, and this will make it appeal especially to mining and metallurgical engineers. They will find the admirable study of retaining walls to be scarcely less useful.

Professor Ketchum is well known as the author of "The Design of Steel Mill Buildings," which won high appreciation because of its eminently practical character. His present work is one of the same order, and will take a high place.-The Engineering and Mining Journal, June 8, 1907.

## THE DESIGN O.F HIGHWAY BRIDGES

## AND THE CALCULATION OF STRESSES IN BRIDGE TRUSSES

By MILO S. KETCHUM, C.E., M.Am.Soc.C.E.<br>Dean of College of Engineering and Professor of Civil Engineering, University of Colorado; Consulting Engineer

Cloth, $61 / 2 \times 9$ ins., pp. $544+\mathrm{xvi}, 77$ tables, 300 illustrations in the text and 8 folding plates. Price, $\$ 4.00$ net, postpaid.

## TABLE OF CONTENTS

PART I.-Stresses in Steel Bridges. Chapter I. Types of Steel Bridges. II. Loads and Weights of Highway Bridges. III. Methods for the Calculation of Stresses in Framed Structures. IV. Stresses in Beams. V. Stresses in Highway Bridge Trusses. VI. Stresses in Railway Bridge Trusses. VII. Stresses in Lateral Systems. VIII. Stresses in Pins; Eccentric and Combined Stresses; Deflection of Trusses; Stresses in Rollers, and Camber. IX. The Solution of 24 Problems in the Calculation of Stresses in Bridge Trusses.

PART II.-The Design of Highway Bridges. Chapter X. Short Span Highway Bridges. XI. High Truss Steel Highway Bridges. XII. Plate Girder Bridges. XIII. Design of Truss Members, XIV. The Details of Highway Bridge Members. XV. The Design of Abutments and Piers. XVI. Stresses in Solid Masonry Arches. XVII. Design of Masonry Bridges and Culverts. XVIII. The Design of Timber and Combination Bridges. XIX. Erection, Estimates of Weight and Cost of Highway Bridges. XX. General Principles of Design of Highway Bridges.

PART III.-A Problem in Highway Bridge Details. Calculation of Weight and Cost of a $160-\mathrm{ft}$. Span Steel Pratt Highway Bridge. The Calculation of the Efficiencies of the Members of a $160-\mathrm{ft}$. Span Steel Pin-connected Highway Bridge.

APPENDIX I. General Specifications for Steel Highway Bridges.

## COMMENTS OF THE PRESS.

Professor Ketchum has done the profession a real service in presenting to civil engineers and students this masterly and complete work on highway bridges. The author has a plain way of getting his ideas before the mind of the reader.-Ernest McCollough, in The Contractor, Dec. 1, 1908.

The reputation for practical book writing established by the author in "The Design of Steel Mill Buildings" and "The Design of Walls, Bins and Grain Elevators" is upheld in his most recent work. Altogether we do not know where bridge designers can find elsewhere so much good practical information as is given them in this book.-Engineering Contracting, Dec. 2, 1908.

Altogether the work embodies a fortunate blending of the rational with the thoroughly practical.-Journal of the Franklin Institute, Jan., 1909.

## SURVEYING MANUAL

# A MANUAL OF FIELD AND OFFICE METHODS FOR THE USE OF STUDENTS IN SURVEYING 

THIRD EDITION

By Professors WILLIAM D. PENCE and MILO S. KETCHUM

Leather, $41 / 2 \times 7$ ins., pp. $252+$ xii, 10 plates and 140 illustrations in the text. Price, $\$ 2.00$ net.

## TABLE OF CONTENTS

Chapter I. General Instructions. II. The Chain and Tape. III. The Compass. IV. The Level. V. The Transit. VI. Topographic Surveying. VII. Land Surveying. VIII. Railroad Surveying. IX. Errors of Surveying. X. Methods of Computing. XI. Freehand Lettering.

## COMMENTS OF THE PRESS.

The object of the authors as stated in the preface, is first "to provide a simple and comprehensive text, designed to anticipate, rather than replace, the usual elaborate treatise; second, to bring the student into immediate familiarity with approved surveying methods; third, to cultivate the student's skill in the rare art of keeping good field notes and making reliable calculations."

In this the authors have succeeded admirably. As a pocket guide to field practice for students, probably nothing better has been produced. Especially are the instructions in regard to keeping field notes to be commended. Many engineers have found that it has taken years to obtain this art, so generally neglected in the work of engineering schools. -Journal of Western Society of Engineers.

The scope of the book is large, and the various subjects included are treated not in a descriptive but in a critical manner. The book is well arranged and is written in a clear concise manner, which should make its study easy and pleasant.-Engineering News.

It gives the student just the information he needs. The book is a gratifying indication of the importance attached to the cultivation of habits of neatness and celerity in the authors' methods of instruction.-Engineering Record.

## McGraw-Hill Book Company, New York

有

| RETURN |
| :--- |
| TO |
| LOAN PERIOD I |

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

| DUE AS STAMPED BELOW |  |  |
| :--- | :--- | :--- | :--- |
| DUE NRLF MAR 26 1985 |  |  |
| MIAY 15 |  |  |
| AUTO OISC.JUL 15 , 88 |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

## GENERAL LIBRARY - U.C. BERKELEY  B000916049




[^0]:    * For a description of the wreck by the wind of the High Bridge over the Mississippi River at St. Paul, Minn., see article by C. A. P. Turner in Trans. Am. Soc. C. E., Vol. 54, p. 3r.
    $\dagger$ Trans. Am. Soc. C. E., Vol. 54, 1905.

[^1]:    * Mr. C. C. Schneider in Trans. Am. Soc. C. E., Vol. 54, 1905. Also see Tables 25 and 26, Appendix III.

[^2]:    * From Report V. Insurance Engineering Experiment Station. Edward Atkinson, Director, Boston, Mass.

[^3]:    * Mr. C. C. Schneider in Trans. Am. Soc. C. E., Vol. 54, 1905.

[^4]:    *Also called "Method of Sections."

[^5]:    *This formula was first deduced by Prof. J. B. Johnson. For deduction of the formula see Chapter XV, of "Modern Framed Structures" by Johnson, Bryan and Turneaure.

[^6]:    * See note, page 142.

[^7]:    *Engineering News, Dec. 8, 1898.

[^8]:    , * Engineering News, June 20, 1905.

[^9]:    *For details of experiments see article by Ralph H. Gage, in the Technograph, No. 17.

[^10]:    *Treatise on Masonry Construction, by Ira O. Baker,-John Wiley \& Soas, Publishers, New York.

[^11]:    * Trans. Am. Soc. C. E., Vol. 54, 1905.

[^12]:    *Eighth Annual Report of the Association of Railway Superintendents of Bridges and Buildings.

[^13]:    *Reports Association of Railway Superintendents of Bridges and Buildings.

[^14]:    *Report No. III. Insurance Engineering Experiment Station, Boston, Mass.

[^15]:    *Report No. III. Insurance Engineering Experiment Station, Boston, Mass.

[^16]:    *Mill Building Construction, H. G. Tyrrell.

[^17]:    * For detailed instructions see Appendix III.

[^18]:    *Pencoyd Handbook, page 293.

[^19]:    *Sand Blast Cleaning of Structural Steel, by G. W. Lilly, Transactions A. Soc. C. E., Feb., 1903.
    **Walter G. Berg, Engineering News, June 6, 1895.

[^20]:    * Also see Appendix III.

[^21]:    Bevel Edge Box Iron same as Light Bands of same sizes.
    Beaded Band Iron $11 / 4$ inch to 2 inch $\frac{7}{10}$ extra.
    Sand Band Iron ${ }_{10}^{1} c$. above same sizes of Light Bands.

[^22]:    *Engineering News, Sept, 4, 1902.

[^23]:    *Engineering News, Aug. 10, 1899, and Engineering Record, 1899.

[^24]:    *Engineering News, Jan. 3, 1903: and Railway Gazette, Nov. 7, 1902.

[^25]:    * Engineering News.

[^26]:    * Engineering News, February 9, 1905 .

[^27]:    * See paragraph 128.
    $\dagger$ See paragraphs 129, I30 and 131.
    $\ddagger$ See paragraph 132 .

